Skip to main content
Log in

Viscoelastic Behavior of Porcine Arterial Tissue: Experimental and Numerical Study

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The viscoelastic properties of aortic tissue dictate vessel behavior in certain disease states, injury modalities, and during some endovascular procedures.

Objective

We characterized the viscoelastic response of porcine abdominal aortic tissue via test and simulation to demonstrate the utility of a viscoelastic anisotropic (VA) constitutive model.

Methods

In this study, the measured stress relaxation response for five samples and uniaxial tensile testing for one sample measured with the digital image correlation (DIC) technique were used to identify material parameters for the VA model using an inverse method through finite element analysis (FEA).

Results

Based on the stress relaxation test, the values of the stress-like parameter \(\mu\), relative stiffness of the fibers \({k}_{1}\), dimensionless parameter \({k}_{2}\), angle of fibers \(\gamma\), dispersion parameter \(\kappa\), relaxation times for the ground matrix \({\mathsf{T}}_{g1}\) and collagen fibers \({\mathsf{T}}_{f1}\) and the dimensionless parameters for the ground matrix \({\beta }_{g1}\) and collagen fibers \({\beta }_{f1}\) for 0 degree specimen orientation were 12.1 ± 8.96 kPa, 77.3 ± 46.4 kPa, 0.032 ± 0.043, 30.25 ± 6.81°, 0.19 ± 0.06, 0.028 ± 0.016 s, 92.76 ± 26.51 s, 3.46 ± 3.78, 0.24 ± 0.08 and for 90 degree specimen orientation were 13.7 ± 7.7 kPa, 72.6 ± 35.4 kPa, 2.18 ± 4.12, 55.35 ± 7.12°, 0.22 ± 0.06, 23.51 ± 38.90 s, 81.52 ± 29.16 s, 5.14 ± 8.72, 0.21 ± 0.05, respectively. The validation revealed an overall good agreement from cycles 2 and 3 based on uniaxial tensile tests and surface strains data from DIC measurements with the material parameters from inverse analysis using FEA for the response in cycle 1.

Conclusions

The identified material model and numerical simulations provide a comprehensive description of the viscoelastic behavior of the aortic wall tissue and a quantitative understanding of the spatial and directional variability underlying aortic tissue mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salunke NV, Topoleski LDT, Humphrey JD, Mergner WJ (2001) Compressive stress-relaxation of human atherosclerotic plaque. J Biomed Mater Res 55(2):236–241

    Article  Google Scholar 

  2. Antonova ML, Antonov PS, Marinov GR, Vlaskovska MV, Kasakov LN (2008) Viscoelastic characteristics of in vitro vital and devitalized rat aorta and human arterial prostheses. Ann Biomed Eng 36(6):947–957

    Article  Google Scholar 

  3. Holzapfel GA, Gasser TC (2007) Computational stress-deformation analysis of arterial walls including high-pressure response. Int J Cardiol 116(1):78–85

    Article  Google Scholar 

  4. Zareh M, Fradet G, Naser G, Mohammadi H (2015) Are two-dimensional images sufficient to assess the atherosclerotic plaque vulnerability: a viscoelastic and anisotropic finite element model. Cardiovasc Syst 3(1):3

    Article  Google Scholar 

  5. Hemmasizadeh A, Autieri M, Darvish K (2012) Multilayer material properties of aorta determined from nanoindentation tests. J Mech Behav Biomed Mater 15:199–207

    Article  Google Scholar 

  6. Screen HRC (2008) Investigating load relaxation mechanics in tendon. J Mech Behav Biomed Mater 1(1):51–58

    Article  Google Scholar 

  7. Shen ZL, Kahn H, Ballarini R, Eppell SJ (2011) Viscoelastic properties of isolated collagen fibrils. Biophys J 100(12):3008–3015

    Article  Google Scholar 

  8. Yang C, Huang X, Zheng J, Woodard PK, Tang D (2006) Quantifying vessel material properties using mri under pressure condition and mri-based fsi mechanical analysis for human atherosclerotic plaques. In: 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, November 5, 2006 - November 10, 2006. American Society of Mechanical Engineers (ASME), Chicago, IL, United States

  9. Lei F, Szeri AZ (2007) Inverse analysis of constitutive models: Biological soft tissues. J Biomech 40(4):936–940

    Article  Google Scholar 

  10. Barrett SR, Sutcliffe MP, Howarth S, Li ZY, Gillard JH (2009) Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J Biomech 42(11):1650–1655

    Article  Google Scholar 

  11. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1):1–48

    Article  MathSciNet  MATH  Google Scholar 

  12. Holzapfel G (2003) Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls with Residual Stresses. In: Holzapfel G, Ogden R (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. Springer, Vienna, pp 109–184

    Chapter  Google Scholar 

  13. Holzapfel GA (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons, Chichester

    MATH  Google Scholar 

  14. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  15. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403

    Article  Google Scholar 

  16. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135(1–2):107–128

    Article  MATH  Google Scholar 

  17. Peña E, Calvo B, Martínez MA, Doblaré M (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int J Solids Struct 44(3–4):760–778

    Article  MATH  Google Scholar 

  18. Leng X, Zhou B, Deng X, Davis L, Lessner SM, Sutton MA, Shazly T (2018) Experimental and numerical studies of two arterial wall delamination modes. J Mech Behav Biomed Mater 77:321–330

    Article  Google Scholar 

  19. Unterberger MJ, Schmoller KM, Wurm C, Bausch AR, Holzapfel GA (2013) Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis. Acta Biomater 9(7):7343–7353

    Article  Google Scholar 

  20. Xu B, Li H, Zhang Y (2013) Understanding the viscoelastic behavior of collagen matrices through relaxation time distribution spectrum. Biomatter 3(3):e24651

    Article  Google Scholar 

  21. Twal W, Klatt S, Harikrishnan K, Gerges E, Cooley M, Trusk T, Zhou B, Gabr M, Shazly T Lessner, S, Markwald R, Argraves WS (2013) Cellularized Microcarriers as Adhesive Building Blocks for Fabrication of Tubular Tissue Constructs. Ann Biomed Eng 1–12

  22. Shazly T, Rachev A, Lessner S, Argraves W, Ferdous J, Zhou B, Moreira A, Sutton M (2014) On the Uniaxial Ring Test of Tissue Engineered Constructs. Exp Mech 55(1):41–51

    Article  Google Scholar 

  23. Prim DA, Zhou B, Hartstone-Rose A, Uline MJ, Shazly T, Eberth JF (2016) A mechanical argument for the differential performance of coronary artery grafts. J Mech Behav Biomed Mater 54:93–105

    Article  Google Scholar 

  24. Leng X, Wang Y, Xu J, Jiang Y, Zhang X, Xiang J (2018) Numerical simulation of patient-specific endovascular stenting and coiling for intracranial aneurysm surgical planning. J Transl Med 16(1):208

    Article  Google Scholar 

  25. Wang Y, Leng X, Zhou X, Li W, Siddiqui AH, Xiang J (2018) Hemodynamics in a Middle Cerebral Artery Aneurysm prior to its Growth and Fatal Rupture: a Case Study and a Review of the Literature. World Neurosurg

  26. Sutton MA (2008) Digital image correlation for shape and deformation measurements. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics. Springer, pp 565–600

    Chapter  Google Scholar 

  27. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur J Mech A Solids 21(3):441–463

    Article  MATH  Google Scholar 

  28. Rajesh R (2000) Coupled Thermomechanical Analysis of Viscoelastic Dampers. State University of New York, Buffalo

    Google Scholar 

  29. ABAQUS (2013) Analysis user’s manual version 6.12. Dassault Systemes Corp

    Google Scholar 

  30. Zhou B, Ravindran S, Ferdous J, Kidane A, Sutton MA, Shazly T (2016) Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens. J Vis Exp 107:e53625

    Google Scholar 

  31. International Digital Image Correlation Society, Jones EMC, Iadicola MA (eds) (2018) A Good practices guide for digital image correlation

  32. Zhou B, Rachev A, Shazly T (2015) The biaxial active mechanical properties of the porcine primary renal artery. J Mech Behav Biomed Mater 48:28–37

    Article  Google Scholar 

  33. Walsh MT, Cunnane EM, Mulvihill JJ, Akyildiz AC, Gijsen FJH, Holzapfel GA (2014) Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J Biomech 47(4):793–804

    Article  Google Scholar 

  34. Zhou B, Wolf L, Rachev A, Shazly T (2014) A structure-motivated model of the passive mechanical response of the primary porcine renal artery. J Mech Med Biol 14(03):1450033

    Article  Google Scholar 

  35. Wang Y, Ning J, Johnson JA, Sutton MA, Lessner SM (2011) Development of a quantitative mechanical test of atherosclerotic plaque stability. J Biomech 44(13):2439–2445

    Article  Google Scholar 

  36. Wang Y, Johnson JA, Spinale FG, Sutton MA, Lessner SM (2014) Quantitative Measurement of Dissection Resistance in Intimal and Medial Layers of Human Coronary Arteries. Exp Mech 54(4):677–683

    Article  Google Scholar 

  37. Leng X, Chen X, Deng X, Sutton M, Lessner S (2015) Modeling of Experimental Atherosclerotic Plaque Delamination. Ann Biomed Eng 43(12):2838–2851

    Article  Google Scholar 

  38. Leng X, Davis LA, Deng X, Sutton MA, Lessner SM (2016) Numerical modeling of experimental human fibrous cap delamination. J Mech Behav Biomed Mater 59:322–336

    Article  Google Scholar 

  39. Mohan D, Melvin JW (1982) Failure properties of passive human aortic tissue. I-Uniaxial tension tests, Journal of Biomechanics 15(11):887–902

    Google Scholar 

  40. Craiem D, Rojo FJ, Atienza JM, Armentano RL, Guinea GV (2008) Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys Med Biol 53(17):4543–4554

    Article  Google Scholar 

  41. Zou Y, Zhang Y (2011) The orthotropic viscoelastic behavior of aortic elastin. Biomech Model Mechanobiol 10(5):613–625

    Article  Google Scholar 

  42. Gupta HS, Seto J, Krauss S, Boesecke P, Screen HRC (2010) In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J Struct Biol 169(2):183–191

    Article  Google Scholar 

  43. Zhou B, Alshareef M, Prim D, Collins M, Kempner M, Hartstone-Rose A, Eberth JF, Rachev A, Shazly T (2016) The perivascular environment along the vertebral artery governs segment-specific structural and mechanical properties. Acta Biomater 45:286–295

    Article  Google Scholar 

  44. Yang L, van der Werf KO, Dijkstra PJ, Feijen J, Bennink ML (2012) Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils. J Mech Behav Biomed Mater 6:148–158

    Article  Google Scholar 

  45. Díaz C, Peña JA, Martínez MA, Peña E (2021) Unraveling the multilayer mechanical response of aorta using layer-specific residual stresses and experimental properties. J Mech Behav Biomed Mater 113:104070

  46. Franchini G, Breslavsky ID, Holzapfel GA, Amabili M (2021) Viscoelastic characterization of human descending thoracic aortas under cyclic load. Acta Biomater 130:291–307

    Article  Google Scholar 

  47. Peña JA, Martínez MA, Peña E (2019) Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach. Biomech Model Mechanobiol 18(6):1709–1730

    Article  Google Scholar 

  48. Deplano V, Boufi M, Gariboldi V, Loundou AD, D’Journo XB, Cautela J, Djemli A, Alimi YS (2019) Mechanical characterisation of human ascending aorta dissection. J Biomech 94:138–146

    Article  Google Scholar 

  49. Leng X, Zhou B, Deng X, Davis L, Sutton MA, Shazly T, Lessner SM (2018) Determination of Viscoelastic Properties of human Carotid Atherosclerotic Plaque by Inverse Boundary Value Analysis. IOP Conf Ser Mater Sci Eng 381

  50. Jia Y, Argueta-Morales IR, Liu M, Bai Y, Divo E, Kassab AJ, DeCampli WM (2015) Experimental Study of Anisotropic Stress/Strain Relationships of the Piglet Great Vessels and Relevance to Pediatric Congenital Heart Disease. Ann Thorac Surg 99(4):1399–1407

    Article  Google Scholar 

  51. Garcia-Herrera CM, Celentano DJ, Cruchaga MA, Rojo FJ, Atienza JM, Guinea GV, Goicolea JM (2012) Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Comput Methods Biomech Biomed Engin 15(2):185–193

    Article  Google Scholar 

  52. Sommer G, Holzapfel GA (2012) 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. J Mech Behav Biomed Mater 5(1):116–128

    Article  Google Scholar 

  53. Ahuja A, Noblet JN, Trudnowski T, Patel B, Krieger JF, Chambers S, Kassab GS (2018) Biomechanical Material Characterization of Stanford Type-B Dissected Porcine Aortas. Front Physiol 9:1317

    Article  Google Scholar 

  54. Weisbecker H, Pierce DM, Regitnig P, Holzapfel GA (2012) Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater 12:93–106

    Article  Google Scholar 

  55. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5):H2048–H2058

Download references

Funding

The authors gratefully acknowledge the sponsorship of the National Natural Science Foundation of China (No.11802113), NSF (award # CMMI-1200358) and partial support by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xiaochang Leng and Suraj Ravindran. The first draft of the manuscript was written by Xiaochang Leng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to X. Leng.

Ethics declarations

Conflict of Interest

The authors confirm there are not conflict of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Verification of Viscoelastic Anisotropic (VA) Model

Appendix: Verification of Viscoelastic Anisotropic (VA) Model

The VA model is verified by comparing numerical and analytical results under the assumption that the material is under plane strain deformation. A unit-cubic model of fiber-reinforced material was implemented with two families of fibers distributed 47° with respect to the circumferential direction (Fig. 2(a)). The surfaces at the x-axis and z-axis are fixed along the x and z directions, respectively. The assumption of material incompressibility, implying that \({\uplambda }_{\mathrm{x}}{\uplambda }_{\mathrm{y}}{\uplambda }_{\mathrm{z}}=1\). When the cubic model was stretched along the x-axis with a stretch ratio \({\lambda }_{x}\), the deformation gradient was calculated as follows:

$${\varvec{F}}=\left[\begin{array}{ccc}{\lambda }_{x}& 0& 0\\ 0& {1/\lambda }_{x}& 0\\ 0& 0& 1\end{array}\right]$$
(28)

Substituting equation (9) into equation (21), the Cauchy stress was calculated,

$${{\varvec{\sigma}}}_{m+1}={\left({{{\varvec{\sigma}}}_{ }}_{vol}^{\infty }{{+{\varvec{\sigma}}}_{ }}_{g}^{\infty }+{{+{\varvec{\sigma}}}_{ }}_{f}^{\infty }+{{\varvec{\sigma}}}_{visf1 }+{{\varvec{\sigma}}}_{visg1 }\right)}_{m+1}$$
(29)

For the volumetric component of the Cauchy stress tensor,

$${{{\varvec{\sigma}}}_{ }}_{vol}^{\infty }=\frac{1}{D}\left(J-\frac{1}{J}\right)J{\varvec{I}}=-p{\varvec{I}}$$
(30)

Since the surfaces perpendicular to the y-axis are traction free,

$$0={\sigma }_{m+1 (\mathrm{yy})}=-p+{\left({{\sigma }_{ }}_{g}^{\infty }+{{+\sigma }_{ }}_{f}^{\infty }+{\sigma }_{visf1 }+{\sigma }_{visg1 }\right)}_{m+1\left(\mathrm{yy}\right)}$$
(31)

where \(p={\left({{\sigma }_{ }}_{g}^{\infty }+{{+\sigma }_{ }}_{f}^{\infty }+{\sigma }_{visf1 }+{\sigma }_{visg1 }\right)}_{m+1 (\mathrm{yy})}\).

With the material parameters of specimen #6–0 from Table 3, the comparison of Cauchy stresses in x direction between analytical and numerical results is shown in Fig. 8. The results show that the numerical predictions of stress vs. stretch ratio curves match the analytic outputs.

Fig. 8
figure 8

Illustrative plots of Cauchy stress-stretch relationship in x-axis direction for analytical (empty circle) and numerical results (red line)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, X., Deng, X., Ravindran, S. et al. Viscoelastic Behavior of Porcine Arterial Tissue: Experimental and Numerical Study. Exp Mech 62, 953–967 (2022). https://doi.org/10.1007/s11340-022-00852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-022-00852-8

Keywords

Navigation