Skip to main content
Log in

Finite element analysis of compressible transversely isotropic hyperelastic shells

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The focus of the current work is on the large deformation analysis of shells made of a transversely isotropic material. For this purpose, a higher-order shell model is adopted and strains are derived and subsequently the stress field of a hyperelastic medium is extracted. Then, by taking advantage of the principle of virtual work, the so-called weak form is obtained. A four-node shell element is developed enriched by remedies for alleviation of locking incorporating transverse shear, membrane and curvature-thickness locking for a compressible anisotropic medium. Finally, some examples are addressed to show the performance of the proposed element as well as anisotropy effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cai, R., Holweck, F., Feng, Z.-Q., Peyraut, F.: Integrity basis of polyconvex invariants for modeling hyperelastic orthotropic materials—Application to the mechanical response of passive ventricular myocardium. Int. J. Non-Linear Mech. 133, 103713 (2021)

    Article  Google Scholar 

  2. Beheshti, A., Sedaghati, R., Rakheja, S.: Transversely isotropic magnetoactive elastomers: theory and experiments. Arch. Appl. Mech. 91(1), 375–392 (2020)

    Article  Google Scholar 

  3. Breslavsky, I.D., Amabili, M., Legrand, M.: Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J. Appl. Mech. 83(5), 051002 (2016)

    Article  Google Scholar 

  4. Amabili, M., Breslavsky, I.D., Reddy, J.N.: Nonlinear higher-order shell theory for incompressible biological hyperelastic materials. Comput. Methods Appl. Mech. Eng. 346, 841–861 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998)

    Article  MATH  Google Scholar 

  6. Zdunek, A., Rachowicz, W.: A mixed higher order FEM for fully coupled compressible transversely isotropic finite hyperelasticity. Comput. Math. Appl. 74(7), 1727–1750 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zdunek, A., Rachowicz, W.: A 3-field formulation for strongly transversely isotropic compressible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 315, 478–500 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zdunek, A., Rachowicz, W., Eriksson, T.: A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 281, 220–249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190(5–7), 519–541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the SKA-element Simplified Kinematics for Anisotropy. Comput. Methods Appl. Mech. Eng. 310, 475–494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Basar, Y., Ding, Y.: Finite-element analysis of hyperelastic thin shells with large strains. Comput. Mech. 18(3), 200–214 (1996)

    Article  MATH  Google Scholar 

  12. Betsch, P., Gruttmann, F., Stein, E.: A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 130(1–2), 57–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sze, K.Y., Zheng, S.J., Lo, S.H.: A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem. Anal. Des. 40(3), 319–340 (2004)

    Article  Google Scholar 

  14. Toscano, R.G., Dvorkin, E.N.: A shell element for finite strain analyses: hyperelastic material models. Eng. Comput. 24(5), 514–535 (2007)

    Article  MATH  Google Scholar 

  15. Balzani, D., Gruttmann, F., Schröder, J.: Analysis of thin shells using anisotropic polyconvex energy densities. Comput. Methods Appl. Mech. Eng. 197(9–12), 1015–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lavrenčič, M., Brank, B.: Hybrid-mixed low-order finite elements for geometrically exact shell models: overview and comparison. Arch. Comput. Methods Eng. 28(5), 3917–3951 (2021)

    Article  MathSciNet  Google Scholar 

  17. Amabili, M.: Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells. Int. J. Non-Linear Mech. 69, 109–128 (2015)

    Article  Google Scholar 

  18. Amabili, M., Reddy, J.N.: The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells. Compos. Struct. 244, 112265 (2020)

    Article  Google Scholar 

  19. Kant, T., Manjunatha, B.S.: An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng. Comput. 5(4), 300–308 (1988)

    Article  Google Scholar 

  20. Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, Wien (1984)

    Book  MATH  Google Scholar 

  21. Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Beheshti, A.: Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates. Comput. Mech. 62(5), 1199–1211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dvorkin, E.N., Bathe, K.J.: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1(1), 77–88 (1984)

    Article  Google Scholar 

  24. Ko, Y., Lee, P.-S., Bathe, K.-J.: The MITC4+ shell element in geometric nonlinear analysis. Comput. Struct. 185, 1–14 (2017)

    Article  Google Scholar 

  25. Betsch, P., Stein, E.: An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun. Numer. Methods Eng. 11(11), 899–909 (1995)

    Article  MATH  Google Scholar 

  26. Schieck, B., Pietraszkiewicz, W., Stumpf, H.: Theory and numerical analysis of shells undergoing large elastic strains. Int. J. Solids Struct. 29(6), 689–709 (1992)

    Article  MATH  Google Scholar 

  27. Hauptmann, R., Schweizerhof, K., Doll, S.: Extension of the ?solid-shell? concept for application to large elastic and large elastoplastic deformations. Int. J. Numer. Methods Eng. 49(9), 1121–1141 (2000)

    Article  MATH  Google Scholar 

  28. Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37(15), 2551–2568 (1994)

    Article  MATH  Google Scholar 

  29. Basar, Y., Grytz, R.: Incompressibility at large strains and finite-element implementation. Acta Mech. 168(1–2), 75–101 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A., Ansari, R. Finite element analysis of compressible transversely isotropic hyperelastic shells. Acta Mech 234, 3061–3079 (2023). https://doi.org/10.1007/s00707-023-03536-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03536-z

Navigation