Skip to main content
Log in

Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff–Love plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The contribution addresses the finite element analysis of bending of plates given the Kirchhoff–Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zienkiewicz OC, Too J, Taylor RL (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    Article  Google Scholar 

  2. Hughes TJR, Cohen M, Harou M (1978) Reduced and selective integration techniques in the finite element analysis of plates. Nucl Eng Des 46:203–222

    Article  Google Scholar 

  3. Malkus DS, Hughes TJR (1978) Mixed finite element methods in reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15:63–81

    Article  Google Scholar 

  4. Zienkiewicz OC, Qu S, Taylor RL, Nakazawa S (1986) The patch test for mixed formulations. Int J Numer Methods Eng 23:1873–1883

    Article  MathSciNet  Google Scholar 

  5. Soh AK, Long ZF, Cen S (1999) A new nine DOF triangular element for analysis of thick and thin plates. Comput Mech 24:408–417

    Article  Google Scholar 

  6. Piltner R, Joseph DS (2001) An accurate low order plate bending element with thickness change and enhanced strains. Comput Mech 27:353–359

    Article  Google Scholar 

  7. Wu F, Liu GR, Li GY, Cheng AG, He ZC (2014) A new hybrid smoothed FEM for static and free vibration analyses of Reissner–Mindlin plates. Comput Mech 54:865–890

    Article  Google Scholar 

  8. Li T, Ma X, Xili J, Chen W (2016) Higher-order hybrid stress triangular Mindlin plate element. Comput Mech 58:911–928

    Article  MathSciNet  Google Scholar 

  9. Zienkiewicz OC, Cheung YK (1964) The finite element method for analysis of elastic isotropic and orthotropic slabs. Proc Inst Civ Eng 28:471–488

    Google Scholar 

  10. Henshell RD, Walters D, Warburton GB (1972) A new family of curvilinear plate bending elements for vibration and stability. J Sound Vibr 20:327–343

    Article  Google Scholar 

  11. Bazeley GP, Cheung YK, Irons BM, Zienkiewicz OC (1966) Triangular elements in bending—conforming and non-conforming solutions. In: Proceedings of 1st conference on matrix methods in structural mechanics AFFDL-TR-66-80, pp 547–576

  12. Morley LSD (1971) On the constant moment plate bending element. J Strain Anal 6:20–24

    Article  Google Scholar 

  13. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics, 6th edn. Elsevier Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  14. Clough RW, Tocher JL (1966) Finite element stiffness matrices for analysis of plate bending. In: Proceedings of 1st conference on matrix methods in structural mechanics AFFDL-TR-66-80, pp 515–545

  15. Irons BM (1969) A conforming quartic triangular element for plate bending. Int J Numer Methods Eng 1:29–46

    Article  Google Scholar 

  16. Clough RW, Felippa CA (1968) A refined quadrilateral element for analysis of plate bending. In: Proceedings of 2nd conference on matrix methods in structural mechanics, AFFDL TR-68-150, pp 399–440

  17. de Veubeke BF (1968) A conforming finite element for plate bending. Int J Solids Struct 4:95–108

    Article  Google Scholar 

  18. Argyris JH, Fried I, Scharpf DW (1968) The tuba family of plate elements for the matrix displacement method. Aeronaut J 72:701–709

    Article  Google Scholar 

  19. Bell K (1969) A refined triangular plate bending element. Int J Numer Meth Eng 1:101–122

    Article  Google Scholar 

  20. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distribution. J AIAA 2:1332–1336

    Article  Google Scholar 

  21. Herrmann LR (1968) Finite element bending analysis of plates. J Eng Mech ASCE 94:13–25

    Google Scholar 

  22. Stricklin JA, Haisler W, Tisdale P, Gunderson K (1969) A rapidly converging triangle plate element. J AIAA 7:180–181

    Article  Google Scholar 

  23. Razzaque A (1973) Program for triangular bending element with derivative smoothing. Int J Numer Methods Eng 5:588–589

    Article  Google Scholar 

  24. Dhatt G, Marcotte L, Matte Y (1986) A new triangular discrete Kirchhoff plate–shell element. Int J Numer Methods Eng 23:453–470

    Article  Google Scholar 

  25. Felippa CA, Militello C (1999) Construction of optimal 3-node plate bending triangles by templates. Comput Mech 24:1–13

    Article  Google Scholar 

  26. Bogner FK, Fox RL, Schmit LA (1966) The generation of interelement-compatible stiffness and mass matrices by the use of interpolation formulae. In: Proceedings of 1st conference on matrix methods in structural mechanics AFFDL-TR-66-80, pp 397–443

  27. Petera J, Pittman J (1994) Isoparametric hermite elements. Int J Numer Methods Eng 37:3489–3519

    Article  MathSciNet  Google Scholar 

  28. Ugural AC (1981) Stresses in plates and shells. McGraw-Hill, New York

    Google Scholar 

  29. Hughes TRJ (1987) The finite element method. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  30. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  31. Chernuka MW, Cowper GR, Lindberg GM, Olson MD (1972) Finite element analysis of plates with curved edges. Int J Numer Methods Eng 4:49–65

    Article  Google Scholar 

  32. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Beheshti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, A. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff–Love plates. Comput Mech 62, 1199–1211 (2018). https://doi.org/10.1007/s00466-018-1559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1559-8

Keywords

Navigation