Skip to main content

Advertisement

Log in

Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analytical concept of a new-type dynamic magnifier for a piezoelectric energy harvester is proposed. The new-type dynamic magnifier consists of the two-spring–mass system located between the constrained end of the piezoelectric beam and the vibrating base structure. The main function of the dynamic magnifier is capable of significantly widening the frequency bandwidth and increasing the power output from the ambient vibration. The mechanical system of the cantilever piezoelectric beam with the end mass offset and the translational and rotational springs attached to the magnifier mass offset has been modeled. The beam motions from the base (translational and rotational) and transverse relative system have been considered. A mathematical model of a cantilevered piezoelectric harvester with the new-type dynamic magnifier has been developed using the generalized Hamilton’s principle. The eigenfunction and natural frequency formulations of the cantilever beam with the new-type dynamic magnifier are presented. The orthogonal conditions of the mode shapes are derived. The reduced order electromechanical coupling dynamic equations are formulated by using the present eigenfunction and the modal Galerkin decomposition method. The effect of the spring stiffness and mass offset of magnifier, and the end mass offset on the performance of the harvester is investigated. Analytical results show that with the proper selection of the design parameters of the magnifier, the harvesting power can be dramatically enhanced and the effective bandwidth of the harvester system can be improved. It is observed that a small change for the end mass offset and two-spring stiffness ratio for widening the operational frequency and magnifying the mechanical system of the piezoelectric beam may result in a substantial change of energy harvester performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schoeftner, J., Krommer, M.: Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads. Acta Mech. 223, 1983–1998 (2012)

    Article  MathSciNet  Google Scholar 

  2. Irschik, H., Krommer, M., Belyaev, A.K., Schlacher, A.K.: Shaping of piezoelectric sensors/actuators for vibrations of slender beams: coupled theory and inappropriate shape functions. J. Intell. Mater. Syst. Struct. 9, 546–554 (1998)

    Article  Google Scholar 

  3. Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    Article  Google Scholar 

  4. Krommer, M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10, 668–680 (2001)

    Article  Google Scholar 

  5. Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1, 327–354 (1990)

    Article  Google Scholar 

  6. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, R1–R21 (2007)

    Article  Google Scholar 

  7. Kim, H., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129–41 (2011)

    Article  Google Scholar 

  8. Caliò, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., Oddo, C.M.: Piezoelectric energy harvesting solutions. Sensors 14(3), 4755–4790 (2014)

    Article  Google Scholar 

  9. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–42 (2004)

    Article  Google Scholar 

  10. Sodano, H.A., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Article  Google Scholar 

  11. duToit, N.E., Wardle, B.L., Kim, S.: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71, 121–160 (2005)

    Article  Google Scholar 

  12. duToit, N.E., Wardle, B.L.: Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45, 1126–1137 (2007)

    Article  Google Scholar 

  13. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  14. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008)

    Article  Google Scholar 

  15. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  16. Stephen, N.G.: On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)

    Article  Google Scholar 

  17. Renno, J.M., Daqaq, M.F., Inman, D.J.: On the optimal energy harvesting from a vibration source. J. Sound Vib. 320, 386–405 (2009)

    Article  Google Scholar 

  18. Marqui, De, Jr, C., Erturk, A., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327, 9–25 (2009)

    Article  Google Scholar 

  19. Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L.: Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct. 19, 045023 (2010)

    Article  Google Scholar 

  20. Kim, E.J., Kim, Y.Y.: Analysis of piezoelectric energy harvesters of a moderate aspect ratio with a distributed end mass. ASME J. Vib. Acoust. 133, 041010 (2011)

    Article  Google Scholar 

  21. Wang, H., Meng, Q.: Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a end-mass for power harvesting. Mech. Syst. Signal Process. 36, 193–209 (2013)

    Article  Google Scholar 

  22. Lumentut, M.F., Howard, I.M.: Intrinsic electromechanical dynamic equations for piezoelectric power harvesters. Acta Mech. 228, 631–650 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lumentut, M.F., Howard, I.M.: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech. 228, 1321–1341 (2017)

    Article  Google Scholar 

  24. Lumentut, M.F., Howard, I.M.: Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with end mass offset under base excitations. Smart Mater. Struct. 23, 095037 (2014)

    Article  Google Scholar 

  25. Lumentut, M.F., Howard, I.M.: Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: numerical and analytical validations. Mech. Syst. Signal Process. 68–69, 562–586 (2016)

    Article  Google Scholar 

  26. Goldschmidtboeing, F., Woias, P.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18, 104013 (2008)

    Article  Google Scholar 

  27. Xu, J.W., Shao, W.W., Kong, F.R., Feng, Z.H.: Right-angle piezoelectric cantilever with improved energy harvesting efficiency. Appl. Phys. Lett. 96(15), 152904 (2010)

    Article  Google Scholar 

  28. Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20(5), 529–544 (2009)

    Article  Google Scholar 

  29. Shindo, Y., Narita, F.: Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int. J. Mech. Mater. Des. 10, 305–311 (2014)

    Article  Google Scholar 

  30. Lee, S.B., Youn, B.D., Jung, B.C.: Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater. Struct. 18(9), 095021-1–095021-12 (2009)

    Google Scholar 

  31. Zhou, W., Penamalli, G.R., Zuo, L.: An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater. Struct. 21, 015014 (2012)

    Article  Google Scholar 

  32. Aldraihem, O., Baz, A.: Energy harvester with a dynamic magnifier. J. Intell. Mater. Syst. Struct. 22, 521–30 (2011)

    Article  Google Scholar 

  33. Aladwani, A., Arafa, M., Aldraihem, O., Baz, A.: Cantilevered piezoelectric energy harvester with a dynamic magnifier. ASME J. Vib. Acoust. 34, 031004 (2012)

    Article  Google Scholar 

  34. Aladwani, A., Aldraihem, O., Baz, A.: A distributed parameter cantilevered piezoelectric energy harvester with a dynamic magnifier. Mech. Adv. Mater. Struct. 21, 566–578 (2014)

    Article  Google Scholar 

  35. Tang, L.P., Wang, J.G.: Size effect of end mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mech. 228, 3997–4015 (2017)

    Article  MathSciNet  Google Scholar 

  36. Rajagopal, K.R.: A note on a reappraisal and generalization of the Kelvin–Voigt model. Mech. Res. Commun. 36, 232–235 (2009)

    Article  Google Scholar 

  37. Banks, H.T., Inman, D.J.: On damping mechanisms in beams. ASME J. Appl. Mech. 58, 716–723 (1991)

    Article  Google Scholar 

  38. IEEE Standard on Piezoelectricity. IEEE, New York (1987)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of PR China (No. 11172087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wang, J. Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier. Acta Mech 229, 4643–4662 (2018). https://doi.org/10.1007/s00707-018-2250-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2250-z

Navigation