Skip to main content

Advertisement

Log in

Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents an adaptive power harvester using a shunted piezoelectric control system with segmented electrodes. This technique has spurred new capability for widening the three simultaneous resonance frequency peaks using only a single piezoelectric laminated beam where normally previous works only provide a single peak for the resonance at the first mode. The benefit of the proposed techniques is that it provides effective and robust broadband power generation for application in self-powered wireless sensor devices. The smart structure beam with proof mass offset is considered to have simultaneous combination between vibration-based power harvesting and shunt circuit control-based electrode segments. As a result, the system spurs new development of the two mathematical methods using electromechanical closed-boundary value techniques and Ritz method-based weak-form analytical approach. The two methods have been used for comparison giving accurate results. For different electrode lengths using certain parametric tuning and harvesting circuit systems, the technique enables the prediction of the power harvesting that can be further proved to identify the performance of the system using the effect of varying circuit parameters so as to visualize the frequency and time waveform responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131–1144 (2003)

    Article  Google Scholar 

  2. Chao, P.C.-P.: Energy harvesting electronics for vibratory devices in self-powered sensors. IEEE Sensor J. 11, 3106–3121 (2011)

    Article  Google Scholar 

  3. Sue, C.-Y., Tsai, N.-C.: Human powered MEMS-based energy harvest devices. Appl. Energy 93, 390–403 (2012)

    Article  Google Scholar 

  4. Abdelkefi, A., Alothman, A., Hajj, M.R.: Performance analysis and validation of thermoelectric energy harvesters. Smart Mater. Struct. 22, 095014 (2013)

    Article  Google Scholar 

  5. Li, Y., Zeynep, C.-B., Butler, D.P.: A hybrid electrostatic micro-harvester incorporating in-plane overlap and gap closing mechanisms. J. Micromech. Microeng. 25, 035027 (2015)

    Article  Google Scholar 

  6. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)

    Article  Google Scholar 

  7. Wang, X., Liang, X., Wei, H.: A study of electromagnetic vibration energy harvesters with different interface circuits. Mech. Syst. Signal Process. 58–59, 376–398 (2015)

    Google Scholar 

  8. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131–1142 (2004)

    Article  Google Scholar 

  9. Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106–107, 214–227 (2012)

    Article  Google Scholar 

  10. Lumentut, M.F., Howard, I.M.: Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: numerical and analytical validations. Mech. Syst. Signal Process. 68–69, 562–586 (2015)

    Google Scholar 

  11. Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    Article  MATH  Google Scholar 

  12. Krommer, M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10, 668–680 (2001)

    Article  Google Scholar 

  13. Irschik, H., Krommer, M., Belyaev, A.K., Schlacher, A.K.: Shaping of piezoelectric sensors/actuators for vibrations of slender beams: coupled theory and inappropriate shape functions. J. Intell. Mater. Syst. Struct. 9, 546–554 (1998)

    Article  Google Scholar 

  14. Krommer, M., Zellhofer, M., Heilbrunner, K.-H.: Strain-type sensor networks for structural monitoring of beam-type structures. J. Intell. Mater. Syst. Struct. 20, 1875–1888 (2003)

    Article  Google Scholar 

  15. Krommer, M., Irschik, H.: A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech. 141, 51–69 (2000)

    Article  MATH  Google Scholar 

  16. Krommer, M.: On the influence of pyroelectricity upon thermally induced vibrations of piezothermoelastic plates. Acta Mech. 171, 59–73 (2004)

    Article  MATH  Google Scholar 

  17. Tzou, H.S., Tseng, C.I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems: finite element formulation and applications. Mech. Syst. Signal Process. 5, 215–231 (1991)

    Article  Google Scholar 

  18. Krommer, M., Irschik, H.: Sensor and actuator design for displacement control of continuous systems. Smart Struct. Syst. 3, 147–172 (2007)

    Article  Google Scholar 

  19. Kapuria, S., Yasin, M.Y.: Active vibration control of smart plates using directional actuation and sensing capability of piezoelectric composites. Acta Mech. 224, 1185–1199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. dell’Isola, F., Maurini, C., Porfiri, M.: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Mater. Struct. 13, 299–308 (2004)

    Article  Google Scholar 

  21. Niederberger, D., Morari, M.: An autonomous shunt circuit for vibration damping. Smart Mater. Struct. 15, 359–364 (2006)

    Article  Google Scholar 

  22. Schoeftner, J., Irschik, H.: Passive damping and exact annihilation of vibrations of beams using shaped piezoelectric layers and tuned inductive networks. Smart Mater. Struct. 18, 125008 (2009)

    Article  Google Scholar 

  23. Schoeftner, J., Krommer, M.: Single point vibration control for a passive piezoelectric Bernoulli-Euler beam subjected to spatially varying harmonic loads. Acta Mech. 223, 1983–1998 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vasques, C.M.A.: Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes. Smart Mater. Struct. 21, 125003 (2012)

    Article  Google Scholar 

  25. Shu, Y.C., Lien, I.C.: Analysis of power outputs for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499–1512 (2006)

    Article  Google Scholar 

  26. Guyomar, D., Badel, A., Lefeuvre, E., Richard, C.: Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 584–595 (2005)

    Article  Google Scholar 

  27. Shu, Y.C., Lien, I.C., Wu, W.J.: An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater. Struct. 16, 2253–2264 (2007)

    Article  Google Scholar 

  28. Wang, X., Lin, L.: Dimensionless optimization of piezoelectric vibration energy harvesters with different interface circuits. Smart Mater. Struct. 22, 1–20 (2013)

    Google Scholar 

  29. Liao, Y., Sodano, H.: Modeling and comparison of bimorph power harvesters with piezoelectric elements connected in parallel and series. J. Intell. Mater. Syst. Struct. 21, 149–159 (2010)

    Article  Google Scholar 

  30. Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L.: Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct. 19, 045023 (2010)

    Article  Google Scholar 

  31. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  32. Lumentut, M.F., Howard, I.M.: Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting. Mech. Syst. Signal Process. 36, 66–86 (2013)

    Article  Google Scholar 

  33. Lumentut, M.F., Howard, I.M.: Analytical modeling of self-powered electromechanical piezoelectric bimorph beams with multidirectional excitation. Int. J. Smart Nano Mater. 2, 134–175 (2011)

    Article  Google Scholar 

  34. Lumentut, M.F., Howard, I.M.: Electromechanical piezoelectric power harvester frequency response modelling using closed-form boundary value methods. IEEE/ASME Trans. Mech. 19, 32–44 (2014)

    Article  Google Scholar 

  35. Wickenheiser, A.M.: Eigensolution of piezoelectric energy harvesters with geometric discontinuities: Analytical modelling and validation. J. Intell. Mater. Syst. Struct. 24, 729–744 (2013)

    Article  Google Scholar 

  36. Lumentut, M.F., Howard, I.M.: Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations. Smart Mater. Struct. 23, 095037 (2014)

    Article  Google Scholar 

  37. Lumentut, M.F., Howard, I.M.: Intrinsic electromechanical dynamic equations for piezoelectric power harvesters. Acta Mech. (2016). doi:10.1007/s00707-016-1726-y

    Google Scholar 

  38. Lumentut, M.F., Francis, L.A., Howard, I.M.: Analytical techniques for broadband multielectromechanical piezoelectric bimorph beams with multifrequency power harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1555–1568 (2012)

    Article  Google Scholar 

  39. Lien, I.C., Shu, Y.C.: Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater. Struct. 21, 082001 (2012)

    Article  Google Scholar 

  40. Xiong, X., Oyadiji, S.O.: Modal optimization of doubly clamped base-excited multilayer broadband vibration energy harvesters. J. Intell. Mater. Syst. Struct. 26, 2216–2241 (2015)

    Article  Google Scholar 

  41. Wu, P.H., Shu, Y.C.: Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Mater. Struct. 24, 094008 (2015)

    Article  Google Scholar 

  42. Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79, 859–879 (2009)

    Article  MATH  Google Scholar 

  43. Thomas, O., Ducarne, J., Deu, J.-F.: Performance of piezoelectric shunts for vibration reduction. Smart Mater. Struct. 21, 015008 (2012)

    Article  Google Scholar 

  44. Lumentut, M.F., Howard, I.M.: Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses—analytical techniques. Smart Mater. Struct. 24, 105029 (2015)

    Article  Google Scholar 

  45. Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, New York (1990)

    Google Scholar 

  46. Tichý, J., Erhart, J., Kittinger, E., Prívratská, J.: Fundamentals of Piezoelectric Sensorics. Springer, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  47. Antoniou, A.: Gyrators using operational amplifiers. Electron. Lett. 3, 350–352 (1967)

    Article  Google Scholar 

  48. Riordan, R.H.S.: Simulated inductors using differential amplifiers. Electron. Lett. 3, 50–51 (1967)

    Article  Google Scholar 

  49. Moheimani, S.O.R., Fleming, A.J.: Piezoelectric Transducers for Vibration Control and Damping. Springer, London (2006)

    MATH  Google Scholar 

  50. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, 1–61 (1909)

    MathSciNet  MATH  Google Scholar 

  51. Courant, R., Hilbert, D.: Methoden der mathematischen Physik (Methods of mathematical physics). Interscience Publishers, vol. 1–2, New York, (1953–1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Lumentut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lumentut, M.F., Howard, I.M. Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech 228, 1321–1341 (2017). https://doi.org/10.1007/s00707-016-1775-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1775-2

Navigation