Skip to main content
Log in

Coefficients of nonlinear thermal expansion for fiber-reinforced composites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present study, a micromechanics model is proposed to predict the coefficients of nonlinear thermal expansion (CTEs) of fiber-reinforced composites. The influence of fiber aspect ratio on the CTEs is also investigated. It is noted that the parameters of fiber aspect ratio have a significant effect on both the longitudinal CTEs and transverse CTEs. The CTEs of composites are also very sensitive to the different fiber volume fractions. Moreover, the Young’s modulus and Poisson’s ratio of composites are taken into account in the present analysis. The theoretical derivations are applicable for the composites under mechanical or thermal environment conditions. The present model offers a direct prediction of CTEs and can account for the effects of fiber aspect ratio and volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shivakumara, I.S., Ravisha, M., Ng, C.O., Varun, V.L.: Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mech. 226(11), 3763–3779 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yang, B.J., Kim, B.R., Lee, H.K.: Micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites. Acta Mech. 223(6), 1307–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ogierman, W., Kokot, G.: A study on fiber orientation influence on the mechanical response of a short fiber composite structure. Acta Mech. 227(1), 173–183 (2016)

    Article  MathSciNet  Google Scholar 

  4. Wernik, J.M., Meguid, S.A.: Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech. 217(1–2), 1–16 (2011)

    Article  MATH  Google Scholar 

  5. Bian, L., Zhao, H.: Elastic properties of a single-walled carbon nanotube under a thermal environment. Compos. Struct. 121, 337–343 (2015)

    Article  Google Scholar 

  6. Zhao, H., Bian, L., Pan, J.: A temperature related study on bifurcation strain and force of carbon nanotubes. Comput. Mater. Sci. 109, 129–136 (2015)

    Article  Google Scholar 

  7. Chensong, D.: Development of a model for predicting the transverse coefficients of thermal expansion of unidirectional carbon fiber reinforced composites. Appl. Compos. Mater. 15, 171–182 (2008)

    Article  Google Scholar 

  8. Gusev, A.A.: Effective coefficient of thermal expansion of n-layered composite sphere model: exact solution and its finite element validation. Int. J. Eng. Sci. 84, 54–61 (2014)

    Article  MathSciNet  Google Scholar 

  9. Haktan, K.Z., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78, 1–10 (2007)

    Article  Google Scholar 

  10. Sideridis, E.: Thermal expansion coefficients of fiber composites defined by the concept of interphase. Compos. Sci. Technol. 51(3), 301–317 (1994)

    Article  MathSciNet  Google Scholar 

  11. Turner, P.S.: Thermal-expansion stress in reinforced plastics. J. Res. Natl. Bur. Stand. 37, 239–550 (1946)

    Article  Google Scholar 

  12. Kerner, E.H.: The elastic and thermoelastic properties of composite media. Proc. Phys. Soc. B 69, 808–813 (1956)

    Article  Google Scholar 

  13. Rosen, B.W., Hashin, Z.: Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8, 157–73 (1970)

    Article  Google Scholar 

  14. Schapery, R.A.: Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2, 380–404 (1968)

    Article  Google Scholar 

  15. Stellbrink, K.K.U.: Micromechanics of Composites: Composite Properties of Fibre and Matrix Constituents. Carl Hanser Verlag, Munich (1996)

    Google Scholar 

  16. Islam, M.D.R., Sjölind, S.G., Pramila, A.: Finite element analysis of linear thermal expansion coefficients of unidirectional cracked composites. J. Compos. Mater. 35, 1762–76 (2001)

    Article  Google Scholar 

  17. Rupnowski, P., Gentza, M., Sutterb, J.K., Kumosa, M.: An evaluation on the elastic properties and thermal expansion coefficients of mediumthe elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers. Compos. A 36(3), 327–38 (2005)

    Article  Google Scholar 

  18. Hill, R.: Theory of mechanical properties of fiber-strengthened materials I: elastic behaviour. J. Mech. Phys. Solids 12, 199–212 (1964)

    Article  MathSciNet  Google Scholar 

  19. Pan, J., Bian, L., Zhao, H., Zhao, Y.: A new micromechanics model and effective elastic modulus of nanotube reinforced composites. Comput. Mater. Sci. 113, 21–26 (2016)

    Article  Google Scholar 

  20. Lu, P.: Further studies on Mori-Tanaka models for thermal expansion coefficients of composites. Polymer 54, 1691–1699 (2013)

    Article  Google Scholar 

  21. Dong, C.: Development of an engineering model for predicting the transverse coefficients of thermal expansion of unidirectional fiber reinforced composites. J. Eng. Mater. Technol. 131(3), 0310011–17 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Bian, L. Coefficients of nonlinear thermal expansion for fiber-reinforced composites. Acta Mech 228, 4341–4351 (2017). https://doi.org/10.1007/s00707-017-1936-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1936-y

Navigation