Skip to main content
Log in

Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The influence of local thermal nonequilibrium with Cattaneo effects in the solid on the onset of thermal-convective instability in a horizontal layer of Darcy porous medium saturated by a ferrofluid in the presence of a uniform vertical magnetic field is investigated. The presence of the Cattaneo effect is to instill instability via oscillatory motion as well which is not reminiscent of the observed instability phenomenon in its absence. Increase in the value of the solid thermal relaxation time parameter τ is found to advance the onset of oscillatory ferroconvection. The onset of stationary ferroconvection is delayed, while the onset of oscillatory convection is accelerated with an increase in the value of the interphase heat transfer coefficientH t. The threshold value of H t, at which the transition from stationary to oscillatory convection takes place, decreases with increasing τ noticeably and marginally with increasing magnetic parameter M 3, while it increases with increasing ratio of conductivities α and magnetic number M 1. The critical wave number for stationary convection is found to be higher than for oscillatory convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosensweig R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  2. Berkovsky B.M., Medvedev V.F., Krakov M.S.: Magnetic Fluids: Engineering Applications. Oxford University Press, New York (1993)

    Google Scholar 

  3. Blums E.S., Cebers A.O., Maiorov M.M.: Magnetic Fluids. de Gruyter, New York (1997)

    Google Scholar 

  4. Hergt R., Andrä W., Ambly C.G., Hilger I., Kaiser W.A., Richter U., Schmidt H.G.: Physical limitations of hypothermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998)

    Article  Google Scholar 

  5. Alexiou C., Arnold W., Hulin P., Klein R., Schmidt A., Bergemann C., Parak F.G.: Therapeutic efficacy of ferrofluid bound anticancer agent. Magnetohydrodynamics 37, 318–322 (2001)

    Google Scholar 

  6. Odenbach S.: Recent progress in magnetic fluid research. J. Phys. Condens. Matter 16, R1135–R1150 (2004)

    Article  Google Scholar 

  7. Ganguly R., Sen S., Puri I.K.: Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J. Magn. Magn. Mater. 271, 63–73 (2004)

    Article  Google Scholar 

  8. Kaloni P.N., Lou J.X.: Convective instability of magnetic fluids. Phys. Rev. E 70, 026313–026324 (2004)

    Article  Google Scholar 

  9. Nkurikiyimfura I., Wang Y., Pan Z.: Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sustain. Energy Rev. 21, 548–561 (2013)

    Article  Google Scholar 

  10. Rosensweig R.E., Zahn M., Vogler T: Stabilization of fluid penetration through a porous medium using magnetizable fluids. In: Berkovsky, B (ed.) Thermomechanics of Magnetic Fluids, pp. 195–211. Hemisphere, Washington (1978)

    Google Scholar 

  11. Zhan M., Rosensweig R.E.: Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface. IEEE Trans. Magn. 16, 275–282 (1980)

    Article  Google Scholar 

  12. Vaidyanathan G., Sekar R., Balasubramanian R.: Ferroconvective instability of fluids saturating a porous medium. Int. J. Eng. Sci. 29, 259–1267 (1991)

    Article  Google Scholar 

  13. Qin Y., Chadam J.: A non-linear stability problem for ferromagnetic fluids in a porous medium. Appl. Math. Lett. 8(2), 25–29 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Borglin S.E., Mordis J., Oldenburg C.M.: Experimental studies of the flow of ferrofluid in porous media. Transp. Porous Med. 41, 61–80 (2000)

    Article  Google Scholar 

  15. Sunil, , Maharajan A.: A nonlinear stability analysis for thermoconvective magnetized ferrofluid saturating a porous medium. Transp. Porous Med. 76, 327–343 (2009)

  16. Shivakumara I.S., Nanjundappa C.E., Ravisha M.: Thermomagnetic convection in a magnetic nanofluid saturated porous medium. Int. J. Appl. Math. Eng. Sci. 2(2), 157–170 (2008)

    Google Scholar 

  17. Shivakumara I.S., Nanjundappa C.E., Ravisha M.: Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. ASME J. Heat Transf. 131, 101003-1–101003-9 (2009)

    Article  Google Scholar 

  18. Nanjundappa C.E., Shivakumara I.S., Ravisha M.: The onset of ferroconvection in a horizontal saturated porous layer heated from below and cooled from above with constant heat flux subject to MFD viscosity. Int. Commun. Heat Mass Transf. 37, 1246–1250 (2010)

    Article  Google Scholar 

  19. Virto L., Carbonell M., Castilla R., Gamez-Montero P.J.: Heating of saturated porous media in practice: several causes of local thermal non-equilibrium. Int. J. Heat Mass Transf. 52, 5412–5422 (2009)

    Article  MATH  Google Scholar 

  20. Sunil, , Sharma Poonam, Mahajan Amit: Nonlinear ferroconvection in a porous layer using a thermal nonequilibrium model. Spec. Top. Rev. Porous Med. 1, 105–121 (2010)

    Article  Google Scholar 

  21. Lee J., Shivakumara I.S., Ravisha M.: Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium. Transp. Porous Med. 86, 103–124 (2011)

    Article  MathSciNet  Google Scholar 

  22. Shivakumara I.S., Lee J., Ravisha M., Gangadhara Reddy R.: The onset of Brinkman ferroconvection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 54, 2116–2125 (2011)

    Article  MATH  Google Scholar 

  23. Shivakumara I.S., Lee J., Ravisha M., Gangadhara Reddy R.: The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection. Meccanica 47, 1359–1378 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cattaneo C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  25. Straughan B., Franchi F.: Bénard convection and the Cattaneo law of heat conduction. Proc. R. Soc. A 96, 175–178 (1984)

    MATH  MathSciNet  Google Scholar 

  26. Lebon G., Cloot A.: Bénard–Marangoni, instability in a Maxwell–Cattaneo fluid. Phys. Lett. A 105, 361–364 (1984)

    Article  MathSciNet  Google Scholar 

  27. Straughan B.: Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass Transf. 53, 95–98 (2010)

    Article  MATH  Google Scholar 

  28. Straughan, B.: Heat Waves. Series in Applied Math Science, vol. 177. Springer, New York (2011)

  29. Straughan B.: Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proc. R. Soc. A 469, 20130187 (2013)

    Article  MathSciNet  Google Scholar 

  30. Stranges D.F., Khayat R.E., Albaalbaki B.: Thermal convection of non-Fourier fluids. Linear stab. Int. J. Therm. Sci. 74, 14–23 (2014)

    Article  Google Scholar 

  31. Haddad S.A.M.: Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int. J. Heat Mass Transf. 68, 659–668 (2014)

    Article  Google Scholar 

  32. Shivakumara I.S., Ravisha M., Ng C.O., Varun V.L.: A thermal non-equilibrium model with Cattaneo effect for convection in a Brinkman porous layer. Int. J. Non Linear Mech. 71, 39–47 (2015)

    Article  Google Scholar 

  33. Nield D.A., Bejan A.: Convection in Porous Media. Springer, New York (2013)

    Book  MATH  Google Scholar 

  34. Finlayson B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 (1970)

    Article  MATH  Google Scholar 

  35. Banu N., Rees D.A.S.: Onset of Darcy–Benard convection using a thermal non-equilibrium Model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  MATH  Google Scholar 

  36. Auernhammer G.K., Brand H.R.: Thermal convection in a rotating layer of a magnetic fluid. Eur. Phys. J. B 16, 157–168 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-On Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivakumara, I.S., Ravisha, M., Ng, CO. et al. Porous ferroconvection with local thermal nonequilibrium temperatures and with Cattaneo effects in the solid. Acta Mech 226, 3763–3779 (2015). https://doi.org/10.1007/s00707-015-1402-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1402-7

Keywords

Navigation