Skip to main content
Log in

Multiscale modeling of the nonlinear response of nano-reinforced polymers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present study uses a nonlinear representative volume element (RVE) to investigate the effective mechanical properties of a nano-reinforced polymer system. Here, the RVE represents the reinforcing carbon nanotube (CNT), the surrounding polymer matrix, and the CNT–polymer interface. Due to the inherent nanoscale involved in simulating CNT structures, an atomistic description is incorporated via the atomistic-based continuum multiscale modeling technique. In this way, the continuum constitutive relations are derived solely from atomistic formulations. The nonlinear response of armchair and zigzag nanotubes and their nano-reinforced polymer equivalents are considered and presented. The results reveal that reinforcing polymeric matrices with 1 to 10 vol% CNTs can result in upward of approximately 23- and 8-fold increases in the tensile and shear stiffness, respectively. These results have a direct bearing on the design and development of nano-reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Endo M., Hayashi T., Kim Y.A., Terrones M., Dresselhaus M.S.: Applications of carbon nanotubes in the twenty-first century. Phil. Trans. R. Soc. Lond. A 362, 2223–2238 (2004)

    Article  Google Scholar 

  3. Kim B.C., Park S.W., Lee D.G.: Fracture toughness of the nano-particle reinforced epoxy composite. Compos. Struct. 86, 69–77 (2008)

    Article  Google Scholar 

  4. Zhai L.L., Ling G.P., Wang Y.W.: Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. Int. J. Adhes. Adhes. 28, 23–28 (2008)

    Article  Google Scholar 

  5. Salehi-Khojin A., Jana S., Wei-Hong Z.: Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy. J. Nanosci. Nanotechnol. 7, 898–906 (2007)

    Article  Google Scholar 

  6. Huang, C.K.: Prediction model of thermal conductivity for composite materials with nano particles. Technical Proceedings of the NSTI Nanotechnology Conference and Trade Show, NSTI, pp. 320–323 (2007)

  7. Qinghua L., Jianhua Z.: Effects of nano fillers on the conductivity, adhesion strength, and reliability of isotropic conductive adhesives (ICAs). Key Eng. Mater. 353, 2879–2882 (2007)

    Article  Google Scholar 

  8. Qian D., Dickey E.C., Andrews R., Rantell T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  Google Scholar 

  9. Schadler L.S., Giannaris S.C., Ajayan P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842–3844 (1998)

    Article  Google Scholar 

  10. Meguid S.A., Sun Y.: On the tensile and shear strength of nano-reinforced composite interfaces. Mater. Des. 25, 289–296 (2004)

    Article  Google Scholar 

  11. Chang T., Geng J., Guo X.: Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. A 462, 2523–2540 (2006)

    Article  Google Scholar 

  12. Rudd R.E.: The atomic limit of finite element modeling in MEMS: Coupling of length scales. Analog. Integr. Circ. Signal Process. 29, 17–26 (2001)

    Article  Google Scholar 

  13. Abraham F.F., Walkup R., Gao H., Duchaineau M., DeLa Rubia T.D., Seager M.: Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proc. Natl. Acad. Sci. USA 99, 5777–5782 (2002)

    Article  Google Scholar 

  14. Wernik J.M., Meguid S.A.: Coupling atomistics and continuum in solids: status, prospects, and challenges. Int. J. Mech. Mater. Des. 5, 79–110 (2009)

    Article  Google Scholar 

  15. Hyer, M.W.: Stress analysis of fiber-reinforced composite materials. McGraw-Hill, Boston

  16. Nemat-Nasser S., Hori M., Denda M.: Micromechanics: overall properties of heterogeneous materials. Appl. Mech. Rev. 47, B24 (1998)

    Google Scholar 

  17. Shan Z., Gokhale A.M.: Representative volume element for non-uniform micro-structure, Comput. Mater. Sci. 24, 361–379 (2002)

    Google Scholar 

  18. Sun C.T., Vaidya R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  19. Bogetti T.A., Wang T., VanLandingham M.R., Gillespie J.W. Jr: Characterization of nanoscale property variations in polymer composite systems: 2. numerical modeling. Compos.: Part A 30, 85–94 (1999)

    Article  Google Scholar 

  20. Liu Y.J., Chen X.L.: Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 35, 69–81 (2003)

    Article  Google Scholar 

  21. Hu N., Fukunaga H., Lu C., Kameyama M., Yan B.: Prediction of elastic properties of carbon nanotube reinforced composites. Proc. R. Soc. A 461, 1685–1710 (2005)

    Article  Google Scholar 

  22. Tserpes K.I., Papanikos P., Labeas G., Pantelakis S.G.: Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theor. Appl. Fract. Mech. 49, 51–60 (2008)

    Article  Google Scholar 

  23. Li C., Chou T.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  24. Li C., Chou T.: Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos. Sci. Technol. 66, 2409–2414 (2006)

    Article  Google Scholar 

  25. Shokrieh M.M., Rafiee R.: On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92, 647–652 (2010)

    Article  Google Scholar 

  26. Belytschko T., Xiao S.P., Schatz G.C., Ruoff R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 1–8 (2002)

    Article  Google Scholar 

  27. Esfarjani K., Gorjizadeh N., Nasrollahi Z.: Molecular dynamics of single wall carbon nanotube growth on nickel surface. Comput. Mater. Sci. 3, 117–120 (2006)

    Article  Google Scholar 

  28. Liew K.M., Chen B.J., Xiao Z.M.: Analysis of fracture nucleation in carbon nanotubes through atomistic-based continuum theory. Phys. Rev. B 71, 235424-1–235424-7 (2005)

    Google Scholar 

  29. Sun X., Zhao W.: Prediction of stiffness and strength of single-walled carbon nanotubes by molecular mechanics based finite element approach. Mater. Sci. Eng. A 390, 366–371 (2005)

    Article  Google Scholar 

  30. Xiao J.R., Staniszewski J., Gillespie J.W. Jr: Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos. Struct. 88, 602–609 (2009)

    Article  Google Scholar 

  31. Natsuki T., Endo M.: Structural dependence of nonlinear elastic properties for carbon nanotubes using continuum analysis. Appl. Phys. A 80, 1463–1468 (2005)

    Article  Google Scholar 

  32. Wernik J.M., Meguid S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)

    Article  MATH  Google Scholar 

  33. Lu J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  34. Hernandez E., Goze C., Bernier P., Rubio A.: Elastic properties of C and B x C y N z composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)

    Article  Google Scholar 

  35. Jin Y., Yuan F.G.: Simulation of elastic properties of single-walled carbon nanotubes. Compos. Sci. Technol. 63, 1507–1515 (2003)

    Article  Google Scholar 

  36. Odegard G.M., Gates T.S., Nicholson L.M., Wise K.E.: Equivalent-continuum modeling of nano-structured materials . Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  37. Natsuki T., Tantrakan K., Endo M.: Effects of carbon nanotubes structures on mechanical properties. Appl. Phys. A 79, 117–124 (2004)

    Article  Google Scholar 

  38. Keller T., De Castro J., Schollmayer M.: Adhesively bonded and translucent glass fiber reinforced polymer sandwich girders. J. Compos. Constr. 8, 461–470 (2004)

    Article  Google Scholar 

  39. Lordi V., Yao N.: Molecular mechanics of binding in carbon-nanotube-polymer composites. J. Mater. Res. 15, 2770–2779 (2000)

    Article  Google Scholar 

  40. Fiedler B., Gojny F.H., Wichmann M.H.G., Nolte M.C.M., Schulte K.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66, 3115–3125 (2006)

    Article  Google Scholar 

  41. Hu Y., Shenderova O.A., Zushou H., Padgett C.W., Brenner D.W.: Carbon nanostructures for advanced composites. Rep. Prog. Phys. 69, 1847–1895 (2006)

    Article  Google Scholar 

  42. Battezzati L., Pisani C., Ricca F.J.: Equilibrium conformation and surface motion of hydrocarbon molecules physisorbed on graphite. Chem. Soc., Faraday Trans. 71, 1629–1639 (1975)

    Article  Google Scholar 

  43. Montazeri, A., Naghdabadi, R.: Investigation the stability of SWCNT-polymer composites in the presence of CNT geometrical defects using multiscale modeling. Proc. Fourth Int. Conf. Multiscale Mater. Model., pp. 163–166 (2008)

  44. Yu M.F., Files B.S., Arepalli S., Ruoff R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  Google Scholar 

  45. Meo M., Rossi M.: Tensile failure prediction of single wall carbon nanotube. Eng. Fract. Mech. 73, 2589–2599 (2006)

    Article  Google Scholar 

  46. Giannopoulos G.I., Kakavas P.A., Anifantis N.K.: Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach. Comput. Mater. Sci. 41, 561–569 (2008)

    Article  Google Scholar 

  47. Srivastava D., Wei C.: Nanomechanics of carbon nanotubes and composites. Appl. Mech. Rev. 56, 215–230 (2003)

    Article  Google Scholar 

  48. Gupta S., Dharamvir K., Jindal V.K.: Elastic moduli of single-walled carbon nanotubes and their ropes. Phys. Rev. B 72, 165428-1–165428-16 (2005)

    Google Scholar 

  49. Xiao J.R., Gama B.A., Gillespie J.W. Jr: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  50. Yeh M., Hsieh T., Tai N.: Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites. Mater. Sci. Eng. A 483, 289–292 (2008)

    Article  Google Scholar 

  51. To C.W.S.: Bending and shear moduli of single-walled carbon nanotubes. Finite Elements Anal. Des. 42, 404–413 (2006)

    Article  Google Scholar 

  52. Krishnan A., Dujardin E., Ebbesen T.W., Yianilos P.N., Treacy M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  53. Tombler T.W., Zhou C., Kong J., Dai H., Liu L., Jayanthi C.S., Tang M., Wu S.Y.: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)

    Article  Google Scholar 

  54. Hall A.R., An L., Liu J., Vicci L., Falvo M.R., Superfine R., Washburn S.: Experimental measurement of single-wall carbon nanotubes torsional properties. Phys. Rev. Lett. 96, 256102-1–256102-4 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.A. Meguid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wernik, J., Meguid, S. Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech 217, 1–16 (2011). https://doi.org/10.1007/s00707-010-0377-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0377-7

Keywords

Navigation