Skip to main content
Log in

Large elastic deformations of soft solids up to failure: new hyperelastic models with error estimation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A direct approach is proposed to obtain new multi-axial elastic potentials for incompressible soft solids. Results are presented with novelties in three respects, namely (i) any given benchmark test data for three deformation modes may be exactly fitted, including uniaxial, equi-biaxial, and plane-strain extension; (ii) model parameters of direct physical meanings may be provided to represent both the strain-stiffening effect and failure behavior; and (iii) error estimation may be established for all possible deformation modes. Numerical examples are in good agreement with Treloar’s classic data for rubbers and with extensive data for gellan gels up to failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand, L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    Article  MATH  Google Scholar 

  2. Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  Google Scholar 

  3. Aron, M.: On certain deformation classes of compressible Hencky materials. Math. Mech. Solids 19, 467–478 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  MATH  Google Scholar 

  5. Beatty, M.F.: Topic in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1733 (1987)

    Article  Google Scholar 

  6. Beatty, M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beatty, M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyce, M.C.: Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Techn. 69, 781–785 (1996)

    Article  Google Scholar 

  9. Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Techn. 73, 504–523 (2000)

    Article  Google Scholar 

  10. Bruhns, O.T., Xiao, H., Meyers, A.: Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  11. Criscione, J.C., Humphrey, J.D., Douglas, A.S., Hunter, W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  12. Diani, J., Gilormini, P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids. 53, 2579–2596 (2005)

    Article  MATH  Google Scholar 

  13. Drozdov, A.D., Gottlieb, M.: Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mech. 183, 231–252 (2006)

    Article  MATH  Google Scholar 

  14. Fitzjerald, S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111–5115 (1980)

    Article  Google Scholar 

  15. Fried, E.: An elementary molecular-statistical basis for the Mooney and Rivlin–Saunders theories of rubber elasticity. J. Mech. Phys. Solids 50, 571–582 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Techn. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  17. Gent, A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271–275 (2005)

    Article  Google Scholar 

  18. Gu, Z.X., Yuan, L., Yin, Z.N., Xiao, H.: A multiaxial elastic potential with error-minimizing approximation to rubberlike elasticity. Acta Mech. Sin. 31, 637–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Phys. 9, 215–220; ibid, 457 (1928)

  20. Hill, R.: Constitutive inequalities for simple materials. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  MATH  Google Scholar 

  21. Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. London A 326, 131–147 (1970)

    Article  MATH  Google Scholar 

  22. Horgan, C.O., Murphy, J.G.: Limiting chain extensibility constitutive models of Valanis-Landel type. J. Elast. 86, 101–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater. 41, 943–950 (2009)

    Article  Google Scholar 

  24. Horgan, C.O., Saccomandi, G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horgan, C.O., Saccomandi, G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127–1146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horgan, C.O., Saccomandi, G.: Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77, 123–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Horgan, C.O., Saccomandi, G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Techn. 79, 1–18 (2006)

    Article  Google Scholar 

  28. Jin, T.F., Yu, L.D., Yin, Z.N., Xiao, H.: Bounded elastic potentials for rubberlike materials with strain-stiffening effects. ZAMM J. Appl. Math. Mech. 95, 1230–1242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D 8, 1285–1304 (1975)

    Article  Google Scholar 

  30. Li, H., Zhang, Y.Y., Wang, X.M., Yin, Z.N., Xiao, H.: Obtaining multi-axial elastic potentials for rubber-like materials via an explicit, exact approach based on spline interpolation. Acta Mech. Sol. Sin. 27, 441–453 (2014)

    Article  Google Scholar 

  31. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubberlike materials—part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Murphy, J.G.: Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids 11, 629–641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike materials. Proc. R. Soc. London A 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  34. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for compressible rubber-like materials. Proc. R. Soc. London A 328, 567–583 (1972)

    Article  MATH  Google Scholar 

  35. Ogden, R.W.: Volume changes associated with the deformation of rubber-like solids. J. Mech. Phys. Solids 24, 323–338 (1976)

    Article  MATH  Google Scholar 

  36. Ogden, R.W., Saccomandi, G., Sgura, I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749–768 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. Roy. Soc. London A 241, 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tang, J.M., Tung, M.A., Lelievre, J., Zeng, Y.Y.: Stress-strain relationships for gellan gels in tension, compression and Torsion. Int. J. Food Eng. 31, 511–529 (1997)

    Article  Google Scholar 

  39. Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  40. Wang, X.M., Li, H., Yin, Z.N., Xiao, H.: Multiaxial strain energy functions of rubberlike materials: an explicit approach based on polynomial interpolation. Rubber Chem. Technol. 87, 168–183 (2014)

    Article  Google Scholar 

  41. Wu, P.D., van der Giessen, E.: On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)

    Article  MATH  Google Scholar 

  42. Xiao, H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)

    Article  Google Scholar 

  43. Xiao, H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta. Mech. 223, 2039–2063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xiao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. 226, 331–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao, H., Bruhns, O.T., Meyers, A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. R. Soc. London A 456, 1865–1882 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiao, H., Bruhns, O.T., Meyers, A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  48. Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  49. Xiao, H., Bruhns, O.T., Meyers, A.: Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B 35, 1919–1931 (1997)

    Article  Google Scholar 

  51. Yu, L.D., Jin, T.F., Yin, Z.N., Xiao, H.: A model for rubberlike elasticity up to failure. Acta Mech. 226, 1445–1456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yu, L.D., Jin, T.F., Yin, Z.N., Xiao, H.: Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data. Appl. Math. Mech. (English Edition) 36, 883–894 (2015)

    Article  MathSciNet  Google Scholar 

  53. Yuan, L., Gu, Z.X., Yin, Z.N., Xiao, H.: New compressible hyperelastic models for rubberlike matereials. Acta Mech. 226, 4059–4072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, Y.Y., Li, H., Wang, X.M., Yin, Z.N., Xiao, H.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Cont. Mech. Thermodyn. 26, 207–220 (2013)

  55. Zhang, Y.Y., Li, H., Xiao, H.: Further study of rubber-like elasticity: elastic potentials matching biaxial data. Appl. Math. Mech. (English Edition) 35, 13–24 (2014)

    Article  MathSciNet  Google Scholar 

  56. Zuniga, A.E.: A non-Gaussian network model for rubber elasticity. Polymer 47, 907–914 (2006)

    Article  Google Scholar 

  57. Zuniga, A.E., Beatty, M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265–2294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Ding, XF., Yin, ZN. et al. Large elastic deformations of soft solids up to failure: new hyperelastic models with error estimation. Acta Mech 228, 1165–1175 (2017). https://doi.org/10.1007/s00707-016-1753-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1753-8

Navigation