Skip to main content
Log in

Further study of rubber-like elasticity: elastic potentials matching biaxial data

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

By virtue of the rational interpolation procedure and logarithmic strain, a direct approach is proposed to obtain elastic potentials that exactly match uniaxial data and shear data for elastomers. This approach reduces the determination of multiaxial elastic potentials to that of two one-dimensional potentials, thus bypassing usual cumbersome procedures of identifying a number of unknown parameters. Predictions of the suggested potential are derived for a general biaxial stretch test and compared with the classical data given by Rivlin and Saunders (Rivlin, R. S. and Saunders, D. W. Large elastic deformation of isotropic materials. VII: experiments on the deformation of rubber. Phill. Trans. Royal Soc. London A, 243, 251–288 (1951)). Good agreement is achieved with these extensive data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Treloar, L. R. G. The Physics of Rubber Elasticity, Oxford Unicersity Press, Oxford (1975)

    Google Scholar 

  2. Gent, A. N. Rubber and rubber elasticity: a review. J. Polymer Sci., 48, 1–17 (1974)

    Google Scholar 

  3. Boyce, M. C. and Arruda, E. M. Constitutive models of rubber elasticity: a review. Rubber Chem. Techn., 73, 504–523 (2000)

    Article  Google Scholar 

  4. Fried, E. An elementary molecular-statistical basis for the Mooney and Rivlin-Sauders theories of rubber elasticity. J. Mech. Phys. Solids, 50, 571–582 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ogden, R. W., Saccomandi, G., and Sgura, I. On worm-like chain models within the threedimensional continuum mechanics framework. Proc. R. Soc. London A, 462, 749–768 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Drozdov, A. D. Constitutive aligns in finite elasticity of rubbers. Int. J. Solids Struct., 44, 272–297 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beatty, M. F. On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids, 13, 375–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Miehe, C., Goketpe, S., and Lulei, F. A micro-macro approach to rubber-like materials-part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids, 52, 2617–2660 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Green, A. E. and Zerna, W. Theoretical Elasticity, Clarendon Press, Oxford (1968)

    MATH  Google Scholar 

  10. Ogden, R. W. Nonlinear Elastic Deformations, Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  11. Ogden, R. W. Recent advances in the phenomenological theory of rubber elasticity. Rubber Chem. Techn., 59, 361–383 (1986)

    Article  Google Scholar 

  12. Beatty, M. F. Topic infinite elasticity: hyperelasticity of rubber, elastomers, and biological tissueswith examples. Appl. Mech. Rev., 40, 1699–1733 (1996)

    Article  Google Scholar 

  13. Gent, A. N. A new constitutive relation for rubber. Rubber Chem. Techn., 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  14. Fu, Y. B. and Ogden, R.W. Nonlinear Elasticity, Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  15. Saccomandi, G. and Ogden, R. W. Mechanics and Thermomechanics of Rubberlike Solids, CISM Couses and Lectures, No. 452, Springer, Wien (2004)

    Google Scholar 

  16. Muhr, A. H. Modeling the stress-strain behaviour of rubber. Rubber Chem. Techn., 78, 391–425 (2005)

    Article  Google Scholar 

  17. Xiao, H. An explicit, direct approach to obtaining multi-axial elastic potentials which exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta Mechanica, 223, 2039–2063 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Xiao, H. An explicit, direct approach to obtaining multi-axial elastic potentials which accurately match data of four benchmark tests for rubbery materials-part 2: general deformations. Acta Mechanica, 224, 479–498 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rivlin, R. S. and Saunders, D. W. Large elastic deformation of isotropic materials, VII: experiments on the deformation of rubber. Phill. Trans. Royal Soc. London A, 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  20. Xiao, H. Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1–52 (2005)

    Article  Google Scholar 

  21. Xiao, H., Bruhns, O. T., and Meyers, A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica, 124, 89–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xiao, H., Bruhns, O. T., and Meyers, A. Hypo-elasticity model based upon the logarithmic stress rate. J. Elasticity, 41, 51–68 (1997)

    Article  MathSciNet  Google Scholar 

  23. Xiao, H., Bruhns, O. T., and Meyers, A. The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. Roy. Soc. London A, 456, 1865–1882 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Xiao, H., Bruhns, O. T., and Meyers, A. Basic issues concerning finite strain measures and isotropic stress-deformation relations. J. Elasticity, 67, 1–23 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xiao, H., Bruhns, O. T., and Meyers, A. Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mechanica, 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  26. Xiao, H. and Chen, L. S. Hencky’s logarithmic strain measure and dual stress-strain and strainstress relations in isotropic finite hyperelasticity. Int. J. Solids Struct., 40, 1455–1463 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao  (肖 衡).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11372172), the 211-Plan of the Education Committee of China (No.A.15-B002-09-032), and the Research Innovation Fund of Shanghai University (No.A. 10-0401-12-001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yy., Li, H. & Xiao, H. Further study of rubber-like elasticity: elastic potentials matching biaxial data. Appl. Math. Mech.-Engl. Ed. 35, 13–24 (2014). https://doi.org/10.1007/s10483-014-1768-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1768-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation