Skip to main content
Log in

Fractional Nambu dynamics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present a new fractional dynamical theory, i.e., the dynamics of a Nambu system with fractional derivatives (the fractional Nambu dynamics), and study its applications to mechanical systems. By using the definition of combined fractional derivative, we construct unified fractional Nambu equations and, respectively, give four new kinds of fractional Nambu equations based on the different definitions of fractional derivative. Further, we study the relations between the fractional Nambu system, the fractional generalized Hamiltonian system, the fractional Birkhoffian system, the fractional Hamiltonian system, the fractional Lagrangian system and a series of integer-order dynamical systems and present the transformation conditions. And furthermore, as applications of the fractional Nambu method, we construct two kinds of fractional dynamical models, which include the fractional Euler–Poinsot model of rigid body which rotates with respect to a fixed point and the fractional Yamaleev oscillator model. This work provides a general method for studying a fractional dynamical problem which is related to science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  2. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  3. Luo S.K., Zhang Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  4. Luo S.K., Li Z.J., Li L.: A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen X.W.: Global Analysis for Birkhoff Systems. Henan University Press, Kaifeng (2002)

    Google Scholar 

  6. Wang P., Fang J.H., Ding N., Zhang X.N.: Hojman exact invariants and adiabatic invariants of Hamilton system. Commun. Theor. Phys. 48, 996–998 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai J.L.: Conformal invariance and conserved quantity of Hamilton system under second-class Mei symmetry. Acta Phys. Pol. A 117, 445–448 (2010)

    Google Scholar 

  8. Banerjee R., Mukherjee P., Paul B.: New Hamiltonian analysis of Regge-Teitelboim minisuperspace cosmology. Phys. Rev. D 89, 043508 (2014)

    Article  Google Scholar 

  9. Luo S.K.: New types of the Lie symmetries and conserved quantities for a relativistic Hamilton system. Chin. Phys. Lett. 20, 597–599 (2003)

    Article  Google Scholar 

  10. Luo S.K.: Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian systems. Acta Phys. Sin. 52, 2941–2944 (2003)

    MATH  Google Scholar 

  11. Pauli W.: On the Hamiltonian structure of non-local field theories. IL Nuovo Cimento 10, 648–667 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martin J.L.: Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator. Proc. R. Soc. Lond. A 251, 536–542 (1959)

    Article  MATH  Google Scholar 

  13. Li J.B., Zhao X.H., Liu Z.R.: Theory and Application of the Generalized Hamilton Systems. Science Press, Beijing (1994)

    Google Scholar 

  14. Jia L.Q., Zheng S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Luo S.K., Li Z.J., Peng W., Li L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang W.A., Luo S.K.: Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang W.A., Luo S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yoichiro N.: Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405–2412 (1973)

    Article  MathSciNet  Google Scholar 

  19. Bayen F., Flato M.: Remarks concerning Nambn’s generalized mechanics. Phys. Rev. D 11, 3049–3053 (1975)

    Article  MathSciNet  Google Scholar 

  20. Takhtajan L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dito G., Flato M., Sternheimer D., Takhtajan L.: Deformation quantization and Nambu mechanics. Commun. Math. Phys. 183, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dito G., Flato M.: Generalized Abelian deformations, application to Nambu mechanics. Lett. Math. Phys. 39, 107–125 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chatterjee R., Takhtajan L.: Aspects of classical and quantum Nambu mechanics. Lett. Math. Phys. 37, 475–482 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gautheron P.: Some remarks concerning Nambu mechanics. Lett. Math. Phys. 37, 103–116 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ammar F., Makhlouf A., Silvestrov S.: Ternary q-Virasoro–Witt Hom–Nambu–Lie algebras. J. Phys. A Math. Theor. 43, 265204 (2010)

    Article  MathSciNet  Google Scholar 

  26. Hagiwara Y.: Nambu–Jacobi structures and Jacobi algebroids. J. Phys. A Math. Gen. 37, 6713–6725 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grabowski J., Marmo G.: On Filippov algebroids and multiplicative Nambu–Poisson structures. Differ. Geom. Appl. 12, 35–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ding G.T.: Relation between the generalized Poisson bracket and Nambu mechanics. J. Yunnan Norm. Univ. 8, 81–84 (1988)

    Google Scholar 

  29. Curtright T.L., Zachos C.K.: Nambu dynamics, deformation quantization, and superintegrability in classical and quantum systems. CRM Proc. Lecture Notes 37, 29–46 (2004)

    MathSciNet  Google Scholar 

  30. Guha P.: Applications of Nambu mechanics to systems of hydrodynamical type. J. Math. Phys. 43, 4035–4040 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guha P.: Applications of Nambu mechanics to systems of hydrodynamical type II. J. Nonlinear Math. Phys. 11, 223–232 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lin P., Fang J.H., Pang T.: Lie symmetry and Hojman conserved quantity of Nambu system. Chin. Phys. B 17, 4361–4364 (2008)

    Article  Google Scholar 

  33. Li Y., Fang J.H., Zhang K.J.: Conformal invariance and a kind of Hojman conserved quantity of the Nambu system. Chin. Phys. B 20, 030201 (2011)

    Article  Google Scholar 

  34. Mandelbrot B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  35. Riewe F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  36. Riewe F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  37. Klimek M.: Stationary-conservation laws for fractional differential equations with variable coefficients. J. Phys. A Math. Gen. 35, 6675–6693 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Agrawal O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Agrawal O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 40, 6287–6303 (2007)

    Article  MATH  Google Scholar 

  40. Cresson J.: Fractional Embedding of Differential Operators and Lagrangian Systems. IHÉS, Paris (2006)

    Google Scholar 

  41. Muslih S.I., Baleanu D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Odzijewicz T., Malinowska A.B., Torres D.F.M.: Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 64, 3351–3366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tarasov V.E., Zaslavsky G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A Math. Gen. 39, 9797–9815 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Chen X.W., Zhao G.L., Mei F.X.: A fractional gradient representation of the Poincaré equations. Nonlinear Dyn. 73, 579–582 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  45. Chen L.Q., Zhao W.J., Zu W.J.: Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib. 278, 861–871 (2004)

    Article  MATH  Google Scholar 

  46. Wang Z.H., Hu H.Y.: Stability of a linear oscillator with damping force of fractional order derivative. Sci. China Phys. Mech. Astron. 53, 345–352 (2010)

    Article  Google Scholar 

  47. Drozdov A.D., Israel B.: Fractional differential models in finite viscoelasticity. Acta Mech. 124, 155–180 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  48. Li L., Luo S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Luo S.K., Li L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MATH  Google Scholar 

  50. Xu Y.L., Luo S.K.: Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, 657–672 (2014)

    Article  MathSciNet  Google Scholar 

  51. Luo S.K., Li L., Xu Y.L.: Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems. Acta Mech. 225, 2653–2666 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  52. Luo S.K., Xu Y.L.: Fractional Lorentz–Dirac model and its dynamical behaviors. Int. J. Theor. Phys. 54, 572–581 (2015)

    Article  MathSciNet  Google Scholar 

  53. Luo S.K., Xu Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)

    Article  MathSciNet  Google Scholar 

  54. He J.M., Xu Y.L., Luo S.K.: Stability for manifolds of equilibrium state of fractional Birkhoffian systems. Acta Mech. 226, 2135–2146 (2015)

    Article  MathSciNet  Google Scholar 

  55. Yamaleev R.M.: Relativistic equations of motion within Nambu’s formalism of dynamics. Ann. Phys. 285, 141–160 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mongkolsakulvong S., Chaikhan P., Frank T.D.: Oscillatory nonequilibrium Nambu systems: the canonical-dissipative Yamaleev oscillator. Eur. Phys. J. B 85, 90–99 (2012)

    Article  Google Scholar 

  57. Li Z.P.: Classical and Quantal Dynamics of Constrained Systems and Their Symmetry Properties. Beijing Polytechnic University Press, Beijing (1993)

    Google Scholar 

  58. Li Z.P.: Constrained Hamiltonian Systems and Their Symmetry Properties. Beijing Polytechnic University Press, Beijing (1999)

    Google Scholar 

  59. Baleanu D., Muslih S.I., Tas K.: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47, 103503 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YL., Luo, SK. Fractional Nambu dynamics. Acta Mech 226, 3781–3793 (2015). https://doi.org/10.1007/s00707-015-1432-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1432-1

Keywords

Navigation