Skip to main content

Advertisement

Log in

Responses of Passiflora spp. to cowpea aphid-borne mosaic virus reveal infection in asymptomatic plants and new species with probable immunity

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), produces socioeconomic problems in Brazil. The objectives of this study were to i) evaluate the temporal progression of PWD, ii) identify Passiflora genotypes with resistance to CABMV, and iii) detect virus infection in asymptomatic plants by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cases where standard RT-PCR detection failed. The experiment was conducted in a greenhouse using 128 genotypes belonging to 12 species and three hybrids (inter- and intraspecific) of Passiflora, evaluated at five time points after inoculation. Progression rates and disease severity were lower in P. cincinnata, P. gibertii, P. miersii, and P. mucronata than in P. edulis, P. alata, Passiflora sp., and hybrids. Of the genotypes tested, 20.31% were resistant, especially the accessions of P. suberosa, P. malacophylla, P. setacea, P. pohlii, and P. bahiensis, which remained asymptomatic throughout the experiment. The absence of symptoms does not imply immunity of plants to the virus, since RT-qPCR analysis confirmed infection by the virus in asymptomatic plants of P. cincinnata, P. gibertii, P. miersii, P. mucronata, P. setacea, P. malacophylla, and P. suberosa. Even after four inoculations, the virus was not detected by RT-qPCR in the upper leaves in plants of the species P. pohlii and P. bahiensis, indicating that these species are probably immune to CABMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernacci LC, Soares-Scott MD, Junqueira NTV, Passos IRDS, Meletti LMM (2008) Passiflora edulis Sims: the correct taxonomic way to cite the yellow passion fruit (and of others colors). Rev Bras Frutic 30:566–576. https://doi.org/10.1590/S0100-29452008000200053

    Article  Google Scholar 

  2. Coelho EM, Azevêdo LC, Umza-Guez MA (2016) Fruto do maracujá: Importância econômica e industrial, produção, subprodutos e prospecção tecnológica. Cad Prospec 9:347. https://doi.org/10.9771/S.CPROSP.2016.009.037

    Article  Google Scholar 

  3. IBGE (Instituto Brasileiro de Geografia e Estatística) (2020) Banco de dados agregados. Sistema IBGE de Recuperação Automática – SIDRA. Disponível em: http://www.ibge.gov.br

  4. Melo JRF, Figueira AR, Moreira CN, Oliveira AC (2015) Recent characterization of cowpea aphid-borne mosaic virus (CABMV) in Bahia State, Brazil, suggests potential regional isolation. Afr J Biotechnol 14:735–744. https://doi.org/10.5897/AJB2015.14409

    Article  CAS  Google Scholar 

  5. Rodrigues LK, Silva LA, Garcêz RM, Chaves AL, Duarte LM, Giampani JS, Eiras M (2015) Phylogeny and recombination analysis of Brazilian yellow passion fruit isolates of Cowpea aphid-borne mosaic virus: origin and relationship with hosts. Australasian Plant Pathol 44:31–41. https://doi.org/10.1007/s13313-014-0308-5

    Article  Google Scholar 

  6. Costa AP, Nogueira I, Peixoto JR, Blum LEB (2020) Screening of sour passion fruit for reaction to bacterial spot and passion fruit woodiness disease. J Agric Sci 12(2):130–137. https://doi.org/10.5539/jas.v12n2p130

    Article  Google Scholar 

  7. Preisigke SC, Viana AP, Santos EA, Santos PR, Santos VO, Ambrósio M, Silva FA, Walter FHB (2020) Selection strategies in a segregating passion fruit population aided by classic and molecular techniques. Bragantia 79:47–61. https://doi.org/10.1590/1678-4499.20190291

    Article  CAS  Google Scholar 

  8. Wylie SJ, Jones MG (2011) The complete genome sequence of a passion fruit woodiness virus isolate from Australia determined using deep sequencing, and its relationship to other potyviruses. Arch Virol 156:479–482. https://doi.org/10.1007/s00705-010-0845-3

    Article  CAS  PubMed  Google Scholar 

  9. Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, Zerbini FM (2017) ICTV virus taxonomy profile: Potyviridae. J Gen Virol 98(3):352. https://doi.org/10.1099/jgv.0.000740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer IH, Rezende JA (2008) Diseases of passion flower (Passiflora spp.). Pest Tech 2:1–19

    Google Scholar 

  11. Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Torrance L (2013) Status and prospects of plant virus control through interference with vector transmission. Annu Rev Phytopathol 51:177–201. https://doi.org/10.1146/annurev-phyto-082712-102346

    Article  CAS  PubMed  Google Scholar 

  12. Dáder B, Then C, Berthelot E, Ducousso M, Ng JC, Drucker M (2017) Insect transmission of plant viruses: multilayered interactions optimize viral propagation. Insect Sci 24:929–946. https://doi.org/10.1111/1744-7917.12470

    Article  PubMed  Google Scholar 

  13. Nascimento AVS, Santana EN, Braz ASK, Alfenas PF, Pio-Ribeiro G, Andrade GP, Zerbini FM (2006) Cowpea aphid-borne mosaic virus (CABMV) is widespread in passionfruit in Brazil and causes passionfruit woodiness disease. Arch Virol 151:1797–1809. https://doi.org/10.1007/s00705-006-0755-6

    Article  CAS  PubMed  Google Scholar 

  14. Correa MF, Pinto APC, Rezende JAM, Harakava R, Mendes BMJ (2015) Genetic transformation of sweet passion fruit (Passiflora alata) and reactions of the transgenic plants to Cowpea aphid-borne mosaic virus. Eur J Plant Pathol 143:813–821. https://doi.org/10.1007/s10658-015-0733-5

    Article  CAS  Google Scholar 

  15. Rodrigues LK, Chaves ALR, Damatto ER, Eiras M (2016) Epidemiological aspects of the transmission and management of Cowpea aphid-borne mosaic virus in a passion fruit orchard. J Plant Pathol 98:531–539. https://doi.org/10.4454/JPP.V98I3.037

    Article  Google Scholar 

  16. Spadotti DMDA, Favara GM, Novaes QS, Mello APOA, Freitas DMS, Edwards Molina JP, Rezende JAM (2019) Long lasting systematic roguing for effective management of CABMV in passion flower orchards through maintenance of separated plants. Plant Pathol 68:1259–1267. https://doi.org/10.1111/ppa.13054

    Article  Google Scholar 

  17. Silva FHL, Viana AP, Santos EA, Freitas JCO, Rodrigues DL, Júnior ATA (2017) Prediction of genetic gains by selection indexes and REML/BLUP methodology in a population of sour passion fruit under recurrent selection. Acta Sci Agron 39:183–190. https://doi.org/10.4025/actasciagron.v39i2.32554

    Article  Google Scholar 

  18. Santos EA, Viana AP, Walter FHB, Freitas JCO, Ramos HCC, Boechat MSB (2019) First report of a genetic map and evidence of QTL for resistance to CABMV in a segregating population of Passiflora. Eur J Plant Pathol 155:903–915. https://doi.org/10.1007/s10658-019-01822-y

    Article  CAS  Google Scholar 

  19. Jesus ON, Santos IS, Lima LKS, Soares TL, Oliveira EJ (2021) Field assessment of a second generation backcross (BC1 × Passiflora edulis) of passion fruit for agronomic performance and resistance to CABMV. Plant Breed. https://doi.org/10.1111/pbr.12888

    Article  Google Scholar 

  20. Freitas JCO, Viana AP, Santos EA, Silva FH, Paiva CL, Rodrigues R, Eiras M (2015) Genetic basis of the resistance of a passion fruit segregant population to Cowpea aphid-borne mosaic virus (CABMV). Trop Plant Pathol 40:291–297. https://doi.org/10.1007/s40858-015-0048-2

    Article  Google Scholar 

  21. Freitas JCO, Viana AP, Santos EA, Paiva CL, Silva FHL, Souza MM (2016) Sour passion fruit breeding: Strategy applied to individual selection in segregating population of Passiflora resistant to Cowpea aphid-borne mosaic virus (CABMV). Sci Hortic 211:241–247. https://doi.org/10.1016/j.scienta.2016.09.002

    Article  Google Scholar 

  22. Maciel SC, Nakano DH, Rezende JAM, Vieira MLC (2009) Screening of Passiflora species for reaction to Cowpea aphid-borne mosaic virus reveals an immune wild species. Sci Agric 66:414–418. https://doi.org/10.1590/S0103-90162009000300018

    Article  CAS  Google Scholar 

  23. Oliveira EJ, Soares TL, Barbosa CJ, Santos-Filho HP, Jesus ON (2013) Disease severity from passion fruit to identify sources of resistance in field conditions. Rev Bras Frutic 35:485–492. https://doi.org/10.1590/S0100-29452013000200018

    Article  Google Scholar 

  24. Sacoman NN, Viana AP, Carvalho VS, Santos EA, Rodrigues R (2018) Resistance to Cowpea aphid-borne mosaic virus in in vitro germinated genotypes of Passiflora setacea. Rev Bras Frut 40:1–10. https://doi.org/10.1590/0100-29452017607

    Article  Google Scholar 

  25. Gonçalves ZS, Lima LKS, Soares TL, Abreu EFM, Barbosa CJ, Cerqueira-Silva CBM, Jesus ON, Oliveira EJ (2018) Identification of Passiflora spp. genotypes resistant to Cowpea aphid-borne mosaic virus and leaf anatomical response under controlled conditions. Sci Hortic 231:166–178. https://doi.org/10.1016/j.scienta.2017.12.008

    Article  Google Scholar 

  26. Santos EA, Viana AP, Freitas JCO, Silva FHL, Rodrigues R, Eiras M (2015) Resistance to Cowpea aphid-borne mosaic virus in species and hybrids of Passiflora: advances for the control of the passion fruit woodiness disease in Brazil. Eur J Plant Pathol 143:85–98. https://doi.org/10.1007/s10658-015-0667-y

    Article  CAS  Google Scholar 

  27. Porto ACM, Santos ML, Oliveira AC (2017) Quality of phytopathometric variables generated from a ranking scale for the CABMV-passionfruit pathosystem. Rev Agro@mbiente 12:58–67. https://doi.org/10.18227/1982-8470ragro.v12i1.4247

    Article  Google Scholar 

  28. Cerqueira-Silva CBM, Melo JRF, Corrêa RX, Oliveira AC (2012) Selection of pathometric variables to assess resistance and infectivity in the passion fruit woodiness pathosystem. Eur J Plant Pathol 134:489–495. https://doi.org/10.1007/s10658-012-0030-5

    Article  Google Scholar 

  29. Gonçalves ZS, Jesus ON, Cerqueira-Silva CBM, Diniz RP, Soares TL, Oliveira EJ (2017) Methodological approaches to assess passion fruit resistance (Passiflora spp.) to passionfruit woodiness disease. Biosci J. https://doi.org/10.14393/BJ-v33n6a2017-36619

    Article  Google Scholar 

  30. Saponari M, Loconsole G, Liao HH, Jiang B, Savino V, Yokomi RK (2013) Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. J Virol Methods 193:478–486. https://doi.org/10.1016/j.jviromet.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  31. Osman F, Hodzic E, Kwon SJ, Wang J, Vidalakis G (2015) Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. J Virol Methods 220:64–75. https://doi.org/10.1016/j.jviromet.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  32. Riska NM, Iwai H (2020) Effects of coinfection with East Asian Passiflora virus and East Asian Passiflora distortion virus on Passiflora foetida. J Gen Plant Pathol 86:211–218. https://doi.org/10.1007/s10327-020-00913-7

    Article  Google Scholar 

  33. Köppen W, Geiger R (1928) Klimate der Erde. Verlag Justus Perthes, Gotha. Wall-map 150cmx200cm

  34. Moura RS, Filho MAC, Gheyi HR, Jesus ON, Lima LKS, Junghans TG (2018) Overcoming dormancy in stored and recently harvested Passiflora cincinnata Mast. seeds. Biosci J 34:1158–1166. https://doi.org/10.14393/BJ-v34n5a2018-39451

    Article  Google Scholar 

  35. Novaes QS, Rezende JAM (2003) Selected mild strains of Passion fruit woodiness virus (PWV) fail to protect preimmunized vines in Brazil. Sci Agric 60:699–708. https://doi.org/10.1590/S0103-90162003000400014

    Article  Google Scholar 

  36. Mckinney HH (1923) Influence of soil temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. J Agric Res 26:195–218

    Google Scholar 

  37. Ferreira CF, Gutierrez DL, Kreuze JF, Iskra-Caruana ML, Chabannes M, Barbosa ACO, Jesus ON (2019) Rapid plant DNA and RNA extraction protocol using a bench drill. Genet Mol Res 18:1–8. https://doi.org/10.4238/gmr18394

    Article  CAS  Google Scholar 

  38. Fontenele R, Abreu R, Lamas N, Alves-Freitas D, Vidal A, Poppiel R, Varsani A (2018) Passion fruit chlorotic mottle virus: molecular characterization of a new divergent geminivirus in Brazil. Viruses. https://doi.org/10.3390/v10040169

    Article  PubMed  PubMed Central  Google Scholar 

  39. Freitas MS (2013) Patossistema Cowpea aphid-borne mosaic virus (CABMV)/maracujazeiro: titulação ‘real time’ do patógeno, sistema de classificação de reação genética diferencial de genótipos do hospedeiro e indução de resistência genética. Dissertação, Universidade Estadual do Sudoeste da Bahia, UESB, Jequié, BA

  40. Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2007) A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J Virol Methods 145:96–105. https://doi.org/10.1016/j.jviromet.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Vandesompele J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Zhang Y, Wang J, Liu L, Pang X, Yuan W (2017) Development of a TaqMan-based real-time PCR assay for the specific detection of porcine circovirus 3. J Virol Methods 248:77–180. https://doi.org/10.1016/j.jviromet.2017.07.007

    Article  CAS  Google Scholar 

  43. Campbell CL, Madden LV (1990) Introducyion to plant disease epidemiology. Wiley, New York, p 532

    Google Scholar 

  44. R Development Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  45. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874. https://doi.org/10.2307/2528823

    Article  Google Scholar 

  46. Cruz CD (2013) Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35:271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

    Article  Google Scholar 

  47. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paula MS, Fonseca MEN, Boiteux LS, Peixoto JR (2010) Genetic characterization of Passiflora species via resistance genes analog markers. Rev Bras Frutic 32:222–229. https://doi.org/10.1590/S0100-29452010005000021

    Article  Google Scholar 

  49. Soares TL, Jesus ON, Souza EH, Rossi ML, Oliveira EJ (2018) Comparative pollen morphological analysis in the subgenera Passiflora and Decaloba. An Acad Bras Ciênc 90:2381–2396. https://doi.org/10.1590/0001-3765201720170248

    Article  PubMed  Google Scholar 

  50. Richardo J, Silvério A (2019) New trends in Passiflora L. pollen grains: morphological/aperture aspects and wall layer considerations. Protoplasma 256:923–939. https://doi.org/10.1007/s00709-019-01350-w

    Article  CAS  PubMed  Google Scholar 

  51. Mäder G, Zamberlan PM, Fagundes NJ, Magnus T, Salzano FM, Bonatto SL, Freitas LB (2010) The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae). Genet mol biol 33:99–108. https://doi.org/10.1590/S1415-47572009005000101

    Article  PubMed  PubMed Central  Google Scholar 

  52. Soares TL, Jesus ON, Souza EH, Oliveira EJ (2018) Floral development stage and its implications for the reproductive success of Passiflora L. Sci Hortic 238:333–342. https://doi.org/10.1016/j.scienta.2018.04.034

    Article  Google Scholar 

  53. Soares TL, Jesus ON, Santos-Serejo JA, Oliveira EJ (2013) In vitro pollen germination and pollen viability in passion fruit (Passiflora spp.). Rev Bras Frutic 35:1116–1126. https://doi.org/10.1590/S0100-29452013000400023

    Article  Google Scholar 

  54. Coelho MSE, Bortoleti KCA, Araújo FP, Melo NF (2016) Cytogenetic characterization of the Passiflora edulis Sims x Passiflora cincinnata Mast. interspecific hybrid and its parents. Euphytica 210:93–104. https://doi.org/10.1007/s10681-016-1704-4

    Article  Google Scholar 

  55. Jesus ON, Soares TL, Oliveira EJ, Santos TCP, Farias DH, Bruckner CH, Novaes QS (2016) Dissimilarity based on morphological characterization and evaluation of pollen viability and in vitro germination in Passiflora hybrids and backcrosses. Acta Hortic 1127:401–408. https://doi.org/10.17660/ActaHortic.2016.1127.62

    Article  Google Scholar 

  56. Cerqueira-Silva CBM, Moreira CN, Figueira AR, Corrêa RX, Oliveira AC (2008) Detection of a resistance gradient to Passion fruit woodiness virus and selection of ‘yellow’ passion fruit plants under field conditions. Genet Mol Res 7:1209–1216. https://doi.org/10.4238/vol7-4gmr484

    Article  CAS  PubMed  Google Scholar 

  57. Viana CDS, Pires MDC, Peixoto JR, Junqueira NTV, Blum LEB (2014) Partial resistance of passion fruit genotypes to the virose of the woodiness of the fruit (Cowpea aphid-borne mosaic virus-CABMV). Biosci J 30:338–345

    Google Scholar 

  58. Cruz Neto AJ, Rosa RCC, Oliveira EJ, Sampaio SR, Santos IS, Souza PU, Jesus ON (2016) Genetic parameters, adaptability and stability to selection of yellow passion fruit hybrids. Crop Breed Appl Biotechnol 16:321–329. https://doi.org/10.1590/1984-70332016v16n4a48

    Article  CAS  Google Scholar 

  59. Jesus CASD, Carvalho EVD, Girardi EA, Rosa RCC, Jesus ON (2018) Fruit quality and production of yellow and sweet Passion fruits in northern state of São Paulo. Rev Bras Frutic 40:1–7. https://doi.org/10.1590/0100-29452018968

    Article  Google Scholar 

  60. Santos IS, Lima LKS, Sampaio SR, Soares TL, Jesus ON (2021) Phenological precocity and resistance to CABMV in passion fruit progenies of the third generation backcross [(P. edulis × P. cincinnata) × P. edulis]. Euphytica 217:6. https://doi.org/10.1007/s10681-021-02842-8

    Google Scholar 

  61. Fonseca KG, Faleiro FG, Peixoto JR, Junqueira NTV, Silva MS, Bellon G, FariaVaz C (2009) Recovery analysis of recurrent genitor in sour passion fruit through RAPD markers. Rev Bras Frutic 31:145–153. https://doi.org/10.1590/S0100-29452009000100021

    Article  Google Scholar 

  62. Suassuna TMF, Bruckner CH, Carvalho CR, Borém A (2003) Self-incompatibility in passion fruit: evidence of gametophytic-sporophytic control. Theor Appl Genet 106:298–302. https://doi.org/10.1007/s00122-002-1103-1

    Article  Google Scholar 

  63. Madureira HC, Pereira TNS, Cunha MD, Klein DE (2012) Histological analysis of pollen-pistil interactions in sour passion fruit plants (Passiflora edulis Sims). Biocell 36:83–90

    Article  Google Scholar 

  64. Obrępalska-Stęplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P (2015) Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. Front Plant Sci 6:903. https://doi.org/10.3389/fpls.2015.00903

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pinto PHD, Peixoto JR, Junqueira NTV, Resende RDO, Mattos JKDA, Melo BD (2008) Reaction of passionfruit genotypes to Cowpea aphid-borne mosaic virus (cabmv). Biosci J 24:19–26

    Google Scholar 

  66. Novaes QS, Rezende JA (2005) Protection between strains of Passion fruit woodiness virus in sunnhemp. Fitopatol Bras 30:307–311. https://doi.org/10.1590/S0100-41582005000300017

    Article  Google Scholar 

  67. Freitas DMS, Rezende JAM (2008) Protection between strains of Papaya ringspot virus: Type W in zucchini squash involves competition for viral replication sites. Sci Agric 65:183–189. https://doi.org/10.1590/S0103-90162008000200012

    Article  Google Scholar 

  68. Liu J, Li XD, Xu S (2020) Single amino acid substitutions in the coat protein and RNA-dependent RNA polymerase alleviated the virulence of Cucumber green mottle mosaic virus and conferred cross protection against severe infection. Virus Genes. https://doi.org/10.1007/s11262-019-01726-3

    Article  PubMed  PubMed Central  Google Scholar 

  69. Folimonova SY (2012) Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol 86:5554–5561. https://doi.org/10.1128/JVI.00310-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L (2017) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS ONE 12:1–20. https://doi.org/10.1371/journal.pone.0186786

    Article  CAS  Google Scholar 

  71. Deng Y, Wang J, Tung J, Liu D, Zhou Y, He S, Li F (2018) A role for small RNA in regulating innate immunity during plant growth. PLoS pathog 14:1–22. https://doi.org/10.1371/journal.ppat.1006756

    Article  CAS  Google Scholar 

  72. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479:85–103. https://doi.org/10.1016/j.virol.2015.02.028

    Article  CAS  PubMed  Google Scholar 

  73. Roossinck MJ, Martin DP, Roumagnac P (2015) Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–727. https://doi.org/10.1094/PHYTO-12-14-0356-RVW

    Article  CAS  PubMed  Google Scholar 

  74. Sun SR, Ahmad K, Wu XB, Chen JS, Fu HY, Huang MT, Gao SJ (2018) Development of quantitative real-time PCR assays for rapid and sensitive detection of two badnavirus species in sugarcane. Biomed Res Int. https://doi.org/10.1155/2018/8678242

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tabara M, Nagashima Y, He K, Qian X, Crosby KM, Jifon J, Fukuhara T (2021) Frequent asymptomatic infection with tobacco ringspot virus on melon fruit. Virus Res 293:198266. https://doi.org/10.1016/j.virusres.2020.198266

    Article  CAS  PubMed  Google Scholar 

  76. Doumayrou J, Leblaye S, Froissart R, Michalakis Y (2013) Reduction of leaf area and symptom severity as proxies of disease-induced plant mortality: the example of the Cauliflower mosaic virus infecting two Brassicaceae hosts. Virus Res 176:91–100. https://doi.org/10.1016/j.virusres.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  77. Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EP (2017) Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 2139:1–14. https://doi.org/10.3389/fmicb.2016.02139

    Article  Google Scholar 

  78. Cruz ARR, Aragão FJL (2014) RNAi based enhanced resistance to Cowpea severe mosaic virus and cowpea aphid borne mosaic virus in transgenic cowpea. Plant pathol 63:831–837. https://doi.org/10.1111/ppa.12178

    Article  CAS  Google Scholar 

  79. Albiach-Marti MR, Grosser JW, Gowda S, Mawassi M, Satyanarayana T, Garnsey SM, Dawson WO (2004) Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Mol Breed 14:117–128. https://doi.org/10.1023/B:MOLB.0000038000.51218.a7

    Article  CAS  Google Scholar 

  80. Chirinos DT, Geraud-Pouey F, Fernandez CE, Bragard C, Romay G (2020) Genomic characterization and transmission efficiency by its vector Bemisia tabaci of a novel recombinant strain of potato yellow mosaic virus. Trop Plant Pathol 45:91–95. https://doi.org/10.1007/s40858-019-00316-w

    Article  Google Scholar 

  81. Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N (2020) Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of nege/kita-like viruses and other novel RNA viruses. Front Microbiol 11:1–19. https://doi.org/10.3389/fmicb.2020.00509

    Article  Google Scholar 

  82. Carvalho BM, Viana AP, Santos PHD, Generoso AL, Corrêa CCG, Silveira V, Santos EA (2019) Proteome of resistant and susceptible Passiflora species in the interaction with cowpea aphid-borne mosaic virus reveals distinct responses to pathogenesis. Euphytica 215:167. https://doi.org/10.1007/s10681-019-2491-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided a doctoral research grant to the first author (ZSG). The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided a postdoctoral scholarship to the third author (LKSL – PDJ 152109/2019-6) and a research productivity fellowship to the second (ONJ – PQ 312774/2018-4) and fourth author (RXC). We acknowledge the research unit of Embrapa Mandioca e Fruticultura for providing the plant material, infrastructure, and technical support for the execution of the research, Dr. Saulo Alves S. de Oliveira for supporting the analysis of data on disease progress rates, and Dr. Antônio Vargas de O. Figueira and the Centro de Energia Nuclear na Agricultura (CENA - Esalq/USP) for providing laboratory space and technical support for training in RT-qPCR of the first author (ZSG).

Funding

This work was funded by the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq – Process 421033/2018-5), Embrapa Mandioca e Fruticultura (Process Embrapa 22.16.04.007.00.00) and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB – TO DTE0001/2016).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing, as well as to interpreting the results, revising, and improving the paper. ZSG carried out the installation of the experiment, assessment of the severity of the disease, molecular analysis of virus detection and quantification, and writing of the paper. ZSG, ONJ, and LKSL participated in the statistical analysis, organization, and elaboration of tables and figures, as well as data interpretation. ONJ, LKSL, and RXC corrected the paper. ONJ and RXC were the creators of this research.

Corresponding author

Correspondence to Onildo Nunes Jesus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The authors declare that the present work complies with the ethical standards of the Committee on Publication Ethics (COPE) and complies with the ethical standards the Universidade Estadual de Santa Cruz and Embrapa Mandioca e Fruticultura.

Additional information

Handling Editor: Ralf Georg Dietzgen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 433 kb)

Supplementary file2 (PDF 488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, Z.S., Jesus, O.N., Lima, L.K.S. et al. Responses of Passiflora spp. to cowpea aphid-borne mosaic virus reveal infection in asymptomatic plants and new species with probable immunity. Arch Virol 166, 2419–2434 (2021). https://doi.org/10.1007/s00705-021-05131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05131-w

Navigation