Skip to main content
Log in

First report of a genetic map and evidence of QTL for resistance to CABMV in a segregating population of Passiflora

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The fruit woodiness disease induced by the cowpea aphid-borne mosaic virus (CABMV) is considered to be of the greatest economic importance in the Passiflora crop. There are no reports of resistance to CABMV identified in P. edulis, and none of the Passiflora cultivars registered thus far are resistant to the virus. On this basis, breeding programs have resorted to wild species to identify sources of resistance that can be efficiently transferred to the cultivated species via interspecific crossing. A preliminary map for a segregating population of Passiflora based on seven microsatellite markers and 43 inter-simple sequence repeat markers was constructed using a BC1 population composed of 187 individuals. The map was generated using JoinMap software and the linkage groups were formed and ranked using a lod score of 3.0 and a maximum recombination value of 40%. The linkage map consisted of 50 markers - 43 ISSR and seven SSR. The generated map covered 1017.1 cM, with one larger linkage group of 211.2 cM and eight smaller groups ranging from 1.8–179.3 cM. Each linkage group contained 3–12 markers, with one marker occurring at every 20.34 cM. Of the total markers, 55% were mapped, and 40.68% of the Passiflora map was covered. Seven small-effect QTL were detected for resistance to CABMV in seven linkage groups. The phenotypic variation rate ranged from 1.45 to 4.68%, totaling 21.81%. This is the first report involving QTL mapping for resistance to CABMV in a segregating population of Passiflora obtained from interspecific crossing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blas, A. L., Yu, Q., Veatch, O. J., Paull, P. E., Moore, P. H., & Ming, R. (2012). Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Molecular Breeding, 29, 457–466. https://doi.org/10.1007/s11032-011-9562-1.

    Article  Google Scholar 

  • Braga, M. F. (2011). Mapeamento de QTL (Quantitative Trait Loci) associados à resistência do maracujá-doce à bacteriose. Tese apresentada para obtenção do título de Doutor em Agronomia. Área de concentração: Genética e Melhoramento de Plantas. Piracicaba 2011.

  • Broman KW and Sen SAA (2009) Guide to QTL Mapping with R/qtl. Springer, New York.

  • Campbell, C. D., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: John Willey.

    Google Scholar 

  • Carneiro, M. S., Camargo, L. E. A., Coelho, A. G., Vencovsky, R., Leite, R. P., Stenzel, N. M. C., & Vieira, M. L. C. (2002). RAPD-based genetic linkage maps of yellow passion fruit (Passiflora edulis Sims.). Genome, 45, 670–678. https://doi.org/10.1139/G02-035.

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira-Silva, C. B. M., Conceição, L. D. H. C. S., Souza, A. P., & Corrêa, R. X. (2014a). A history of passion fruit woodiness disease with emphasis on the current situation in Brazil and prospects for Brazilian passion fruit cultivation. European Journal of Plant Pathology, 139(2), 255–264. https://doi.org/10.1007/s10658-014-0391-z.

    Article  Google Scholar 

  • Cerqueira-Silva, C. B. M., Santos, E. S. L., & Vieira, J. G. P. (2014b). New microsatellite markers for wild and commercial species of Passiflora (Passifloraceae) and cross-amplification. Applications in Plant Sciences, 2(2). https://doi.org/10.3732/apps.1300061.

    Article  Google Scholar 

  • Cerqueira-Silva, C. B. M., Jesus, O. N., Oliveira, E. J., Santos, E. S. L., & Souza, A. P. (2015). Characterization and selection of passion fruit (yellow and purple) accessions based on molecular markers and disease reactions for use in breeding programs. Euphytica, 202(3), 345–359. https://doi.org/10.1007/s10681-014-1235-9.

    Article  CAS  Google Scholar 

  • Freitas, J. C. O., Viana, A. P., Santos, E. A., Silva, F. H. L., Paiva, C. L., Rodrigues, R., Souza, M. M., & Eiras, M. (2015). Genetic basis of the resistance of a passion fruit segregant populationto cowpea aphid-borne mosaicvirus (CABMV). Tropical Plant Pathology, 40, 291–297. https://doi.org/10.1007/s40858-015-0048-2.

    Article  Google Scholar 

  • IBGE. (2016). Instituto Brasileiro de Geografia e Estatística. Banco de dados agregados: produção agrícola municipal. Rio de Janeiro. Disponível https://sidra.ibge.gov.br/Tabela/1613. Acesso em 06 de junho 2016.

  • Khan, M. A., & Korban, S. S. (2012). Association mapping in forest tree sand fruit crops. Journal of Experimental Botany, 63(11), 4045–4060. https://doi.org/10.1093/jxb/ers105.

    Article  CAS  PubMed  Google Scholar 

  • Kosambi, D. D. (1944). The estimation of map distance from recombination values. Annuaire of Eugenetics, 12, 172–175.

    Google Scholar 

  • Kunihisa, M. S., Moriya, K., Abe, K., Okada, T., Haji, T., Hayashi, H., Kim, C., Nishitani, S., & Yamamoto, T. (2014). Identification of QTLs for fruit quality traits in Japanese apples: QTL for early ripening are tightly linked to preharvest fruit drop. Breeding Science, 64, 240–251. https://doi.org/10.1270/jsbbs.64.240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes, R., Teresa, M., & Lopes, G. (2006). Linkage and mapping of resistance genes to Xanthomonas axonopodis pv.passiflorae in yellow passion fruit. Genome, 49, 17–29. https://doi.org/10.1139/G05-081.

    Article  CAS  PubMed  Google Scholar 

  • Moraes, M. C., Geraldi, I. O., Matta, F. P., & Vieira, M. L. C. (2005). Genetic and phenotypic parameter estimates for yield and fruit quality traits from a single wide cross in yellow passion fruit. Horticultural Science, 40(7), 1978–1981.

    Google Scholar 

  • Moulin, M. M., Rodrigues, R., Ramos, H. C. C., Bento, C. S., Sudré, C. P., Gonçalves, L. S. A., & Viana, A. P. (2015). Construction of an integrated genetic map for Capsicum baccatum L. Genetics and Molecular Research, 14, 6683–6694. https://doi.org/10.4238/2015.

    Article  PubMed  Google Scholar 

  • Novaes, Q. S., & Rezende, J. A. M. (1999). Possível aplicação do DAS-ELISA indireto na seleção de maracujazeiro tolerante ao ‘Passionfruit Woodiness Virus’. Fitopatologia Brasileira, 24, 76–79.

    Google Scholar 

  • Oliveira, E. J., Vieira, M. L., Garcia, A. A. F., Munhoz, C. F., Margarido, G. R. A., Matta, P., & Moraes, M. M. (2008). An integrated molecular map of yellow passion fruit based on simultaneous maximum-likelihood estimation of linkage and linkage phases. Journal of the American Society for Horticultural Science, 133(1), 35–41.

    Article  CAS  Google Scholar 

  • Oliveira, N. N. S., Viana, A. P., Quintal, S. R., Paiva, C. L., & Marinho, C. S. (2014). Análise de distância genética entre acessos do gênero Psidium via marcadores ISSR. Rev. Bras. Frutic. Jaboticabal, 36(4), 917–923. https://doi.org/10.1590/0100-2945-413/13.

    Article  Google Scholar 

  • Pádua, J. G., Oliveira, E. J., Zucchi, M. I., Oliveira, G. C. X., Camargo, L. E. A., & Vieira, M. L. C. (2005). Isolation and characterization of microsatellite markers from the sweet passion fruit (Passifloraalata Curtis: Passifloraceae). Molecular Ecology Notes, 5, 863–865. https://doi.org/10.1111/j.1471-8286.2005.01090.x.

    Article  CAS  Google Scholar 

  • Pereira, G. S., Nunes, E. S., Laperuta, L. C., Braga, M. F., Penha, H. A., Diniz, A. L., Munhoz, C. F., Gazaffi, R., Garcia, A. A. F., & Vieira, M. L. C. (2013). Molecular polymorphism and linkage analysis in sweet passion fruit, an outcrossing species. Annals of Applied Biology, 162(3), 347–361. https://doi.org/10.1111/aab.12028.

    Article  CAS  Google Scholar 

  • Pinheiro, C. R. (2015). Mapeamento de QTL (QuantitativeTrait Loci) associados à resposta do maracujá-doce à bacteriose usando a abordagem de modelos mistos, 2015. Universidade de São Paulo “Escola Superior de Agricultura Luís de Queiroz.”

  • Priyamedha, B. K., Singh, G., Sangha, M. K. K., & Banga, S. S. (2012). RAPD, ISSR and SSR based integrated linkage map from an F2 hybrid population of resynthesized and natural Brassica carinata. National Academy Science Letters, 35, 303–308. https://doi.org/10.1007/s40009-012-0057-3.

    Article  Google Scholar 

  • Qi, X., Pittaway, T. S., Lindup, S., Liu, H., Waterman, E., Padi, F. K., Hash, C. T., Zhu, J., Gale, M. D., & Devos, K. M. (2004). An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theoretical and Applied Genetics, 109, 1485–1493. https://doi.org/10.1007/s00122-004-1765-y.

    Article  CAS  PubMed  Google Scholar 

  • Santos, L. F., Oliveira, E. J., & Santos Silva, A. (2011). ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochemical Genetics, 49(7–8), 540–554. https://doi.org/10.1007/s10528-011-9429-5.

    Article  CAS  PubMed  Google Scholar 

  • Santos, E. A., Viana, A. P., Freitas, J. C. O., Souza, M. M., & Paiva, C. L. (2014). Phenotyping of Passiflora edulis, P. setacea, and their hybrids by a multivariate approach. Genetics and Molecular Research, 13(4), 9828–9845. https://doi.org/10.4238/2014.

    Article  CAS  PubMed  Google Scholar 

  • Santos, E. A., Viana, A. P., Freitas, J. C. O., Silva, F. H. L., Rodrigues, R., & Eiras, M. (2015). Resistance to cowpea aphid-borne mosaic virus in species and hybrids of Passiflora: Advances for the control of the passion fruit woodiness disease in Brazil. European Journal of Plant Pathology, 143, 85–98. https://doi.org/10.1007/s10658-015-0667-y.

    Article  CAS  Google Scholar 

  • Van Ooijen, J. W. (2006). JoinMap version 4.0: Software for the calculation of genetic link age maps. Kyazma BV, Wageningen, the Netherlands, 23p.

  • Van Ooijen, J. W., Voorrips, R. E. (2001). Join map version 3.0: Software for the calculation of genetic link age maps (software). Wageningen. Plant Research International, 51p.

  • Wu, R., Ma, C. X., Painter, I., & Zeng, Z. B. (2002). Simultaneous maximum likelihood estimation of link age and linkage phases in outcrossing species. Theoretical Population Biology (New York), 61, 349–336. https://doi.org/10.1006/tpbi.2002.1577.

    Article  Google Scholar 

  • Yamamoto, T., Terakami, S., Takada, N., Nishio, S., Onoue, N., Nishitani, C., Kunihisa, M., Inoue, E., Iwata, H., Hayashi, T., Itai, A., & Saito, T. (2014). Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (PyruspyrifoliaNakai). Breeding Science, 64, 351–361. https://doi.org/10.1270/jsbbs.64.351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen Azevedo Santos.

Ethics declarations

The authors declare that they have no conflict of interest and certify that this work was carried out in a public research organization and that no potential source of conflict of interest exists with any other public or private research organization. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E.A., Viana, A.P., de Barros Walter, F.H. et al. First report of a genetic map and evidence of QTL for resistance to CABMV in a segregating population of Passiflora. Eur J Plant Pathol 155, 903–915 (2019). https://doi.org/10.1007/s10658-019-01822-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01822-y

Keywords

Navigation