Skip to main content
Log in

Soliton solutions for a class of critical Schrödinger equations with Stein–Weiss convolution parts in \(\mathbb {R}^2\)

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the following class of quasilinear Schrödinger equations introduced in plasma physics and nonlinear optics with Stein–Weiss convolution parts

$$\begin{aligned} -\Delta u+V(x) u+\frac{\kappa }{2} u\Delta (u^2)=\frac{1}{|x|^\beta }\Bigg (\int _{\mathbb {R}^2}\frac{H(u)}{|x-y|^\mu |y|^\beta }dy\Bigg ) h(u),~x\in \mathbb {R}^2, \end{aligned}$$

where \(\kappa \in \mathbb {R}\backslash \{0\}\) is a parameter, \(\beta >0\), \(0<\mu <2\) with \(0<2\beta +\mu <2\) and H is the primitive of h that fulfills the critical exponential growth in the Trudinger–Moser sense. For \(\kappa <0\): (i) via using a change of variable argument and the mountain-pass theorem, we investigate the existence of ground state solutions only assuming that \(V\in C^0(\mathbb {R}^2,\mathbb {R}^+)\) and \(\inf _{x \in \mathbb {R}^2}V(x)>0\), which complements and generalizes the problems proposed in our recent work in Alves and Shen (J Differ Equ 344:352–404, 2023); (ii) by developing a new type of Trudinger–Moser inequality, we establish a Pohoz̆aev type ground solution by the constraint minimization approach when \(V\equiv 1\). Moreover, if \(\kappa >0\) is small, combining the mountain-pass theorem and Nash–Moser iteration procedure, we obtain the existence of nontrivial solutions, where the asymptotical behavior is also considered when \(\kappa \rightarrow 0^+\). It seems that the results presented above are even new for the case \(\kappa =0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study

References

  1. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  Google Scholar 

  2. Adachi, S., Tanaka, K.: Trudinger type inequalities in \(\mathbb{R} ^N\) and their best exponents. Proc. Am. Math. Soc. 128, 2051–2057 (2000)

    Article  Google Scholar 

  3. Adimurthi, S.L., Yadava, S.L.: Multiplicity results for semilinear elliptic equations in bounded domain of \(\mathbb{R} ^{2}\) involving critical exponent. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17(4), 481–504 (1990)

    MathSciNet  Google Scholar 

  4. Adimurthi, Y.Y.: An interpolation of Hardy inequality and Trudinger–Moser inequality in \(\mathbb{R} ^N\) and its applications. Int. Math. Res. Not. IMRN 13, 2394–2426 (2010)

    Google Scholar 

  5. Adimurthi, K.S.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13(5–6), 585–603 (2007)

    Article  MathSciNet  Google Scholar 

  6. Agueh, M.: Sharp Gagliardo–Nirenberg inequalities via \(p\)-Laplacian type equations. NoDEA Nonlinear Differ. Equ. Appl. 15, 457–472 (2008)

    Article  MathSciNet  Google Scholar 

  7. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \(\mathbb{R} ^2\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  Google Scholar 

  8. Alves, C.O., Nobrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(3), 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  9. Alves, C.O., Shen, L.: Critical Schrödinger equations with Stein–Weiss convolution parts in \(\mathbb{R} ^2\). J. Differ. Equ. 344, 352–404 (2023)

    Article  Google Scholar 

  10. Alves, C.O., Wang, Y., Shen, Y.: Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259(1), 318–343 (2015)

    Article  Google Scholar 

  11. Alves, C.O., Figueiredo, G.M., Severo, U.B.: Multiplicity of positive solutions for a class of quasilinear problems. Adv. Differ. Equ. 252, 911–942 (2009)

    MathSciNet  Google Scholar 

  12. Alves, C.O., Figueiredo, G.M., Severo, U.B.: A result of multiplicity of solutions for a class of quasilinear equations. Proc. Edinb. Math. Soc. 55, 291–309 (2012)

    Article  MathSciNet  Google Scholar 

  13. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  14. Brézis, H., Nirenberg, L.: Remarks on finding critical points points. Commun. Pure Appl. Math. 44, 939–963 (1991)

    Article  MathSciNet  Google Scholar 

  15. Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R} ^2\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    Article  Google Scholar 

  16. Cassani, D., Tarsi, C.: Schrödinger–Newton equations in dimension two via a Pohozaev–Trudinger log-weighted inequality. Calc. Var. Partial Differ. Equ. 60(5), 1–31 (2021)

    Article  Google Scholar 

  17. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56(2), 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  18. de Souza, M., do João Marcos, B.: A sharp Trudinger–Moser type inequality in \(\mathbb{R} ^2\). Trans. Am. Math. Soc. 366, 4513–4549 (2014)

    Article  Google Scholar 

  19. do João Marcos, B.: \(N\)-Laplacian equations in \(\mathbb{R} ^N\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MathSciNet  Google Scholar 

  20. do João Marcos, B., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. Partial Differ. Equ. 38, 275–315 (2010)

    Article  Google Scholar 

  21. Du, L., Gao, F., Yang, M.: On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022)

    Article  MathSciNet  Google Scholar 

  22. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \(\mathbb{R} ^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    Article  Google Scholar 

  23. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady-State Problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    Google Scholar 

  24. Goldman, M.V.: Strong turbulence of plasma waves. Rev. Modern Phys. 56, 709–735 (1984)

    Article  Google Scholar 

  25. Gloss, E., Severo, U.: Soliton solutions for a class of Schrödinger equations with a positive quasilinear term and critical growth. Proc. Edinb. Math. Soc. (2) 65(1), 279–301 (2022)

    Article  MathSciNet  Google Scholar 

  26. Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  27. Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of \(N\)-Laplacian type with critical exponential growth in \(\mathbb{R} ^N\). J. Funct. Anal. 262(3), 1132–1165 (2012)

    Article  MathSciNet  Google Scholar 

  28. Li, X., Yang, M., Zhou, X.: Qualitative properties and classification of solutions to elliptic equations with Stein–Weiss type convolution part. Sci. China Math. 65, 2123–2150 (2022)

    Article  MathSciNet  Google Scholar 

  29. Li, Y., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R} ^{N}\). Indiana Univ. Math. J. 57, 451–480 (2008)

    Article  MathSciNet  Google Scholar 

  30. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    Article  MathSciNet  Google Scholar 

  31. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  32. Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, AMS, Providence, Rhode Island (2001)

  33. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1073 (1980)

    Article  MathSciNet  Google Scholar 

  34. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam 1, 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  35. Liu, X., Liu, J., Wang, Z.-Q.: Quasilinear elliptic equationss via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)

    Article  MathSciNet  Google Scholar 

  36. Liu, J., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187(2), 473–493 (2003)

    Article  Google Scholar 

  37. Liu, J., Wang, Y., Wang, Z.-Q.: Solutions for quasilinear Schrodinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MathSciNet  Google Scholar 

  38. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  39. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian System. Springer, New York (1989)

    Book  Google Scholar 

  40. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/1971)

  41. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  Google Scholar 

  42. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  43. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  44. Medeiros, E., Severo, U.: On a quasilinear nonhomogeneous elliptic equation with critical growth in \(\mathbb{R} ^n\). J. Differ. Equ. 246, 1363–1386 (2009)

    Article  Google Scholar 

  45. Miyagaki, O.H., Soares, S.H.: Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 248(4), 722–744 (2010)

    Article  Google Scholar 

  46. Pekar, S.I.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  Google Scholar 

  47. Pohozaev, S.I.: The Sobolev embedding in the case \(pl = n\). In: Proc. Tech. Sci. Conf. on Adv. Sci., Research Mathematics Section, Moscow, 1965, pp. 158–170 (1964–1965)

  48. Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  Google Scholar 

  49. Porkolab, M., Goldman, M.V.: Upper-hybrid solitons and oscillating two-stream instabilities. Phys. Fluids. 19, 872–881 (1978)

    Article  MathSciNet  Google Scholar 

  50. Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \(\mathbb{R} ^2\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MathSciNet  Google Scholar 

  51. Ruiz, D., Siciliano, G.: Existence of ground states for a modified nonlinear Schrödinger equation. Nonlinearity 23(5), 1221–1233 (2010)

    Article  MathSciNet  Google Scholar 

  52. Severo, U., Gloss, E., da Silva, E.: On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms. J. Differ. Equ. 263(6), 3550–3580 (2017)

    Article  Google Scholar 

  53. Shen, L., Rădulescu, V.D., Yang, M.: Planar Schrödinger–Choquard equations with potentials vanishing at infinity: The critical case. J. Differ. Equ. 329, 206–254 (2022)

    Article  Google Scholar 

  54. Silva, E.A., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2010)

    Article  Google Scholar 

  55. Stein, E.M., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MathSciNet  Google Scholar 

  56. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  Google Scholar 

  57. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  58. Yang, M., Rădulescu, V.D., Zhou, X.: Critical Stein–Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions. Calc. Var. Partial Differ. Equ. 61, 109 (2022)

    Article  MathSciNet  Google Scholar 

  59. Yang, M., Zhou, X.: On a coupled Schrödinger system with Stein–Weiss type convolution part. J. Geom. Anal. 31, 10263–10303 (2021)

    Article  MathSciNet  Google Scholar 

  60. Zhang, C., Chen, L.: Concentration-compactness principle of singular Trudinger–Moser inequalities in \(\mathbb{R} ^n\) and \(n\)-Laplace equations. Adv. Nonlinear Stud. 18(3), 567–585 (2018)

    Article  MathSciNet  Google Scholar 

  61. Zhang, Y., Tang, X.: Large perturbations of a magnetic system with Stein-Weiss convolution nonlinearity. J. Geom. Anal., 32(3), Paper No. 102, 27 pp (2022)

  62. Zhang, Y., Tang, X., Rădulescu, V.D.: Anisotropic Choquard problems with Stein-Weiss potential: nonlinear patterns and stationary waves. C. R. Math. Acad. Sci. Paris 359, 959–968 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudianor Oliveira Alves or Liejun Shen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. We also declare that this manuscript has no associated data.

Additional information

Communicated by Gerald Teschl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. O. Alves is partially supported by CNPq/Brazil 307045/2021-8 and Projeto Universal FAPESQ-PB 3031/2021.

L. J. Shen is partially supported by NSFC (12201565).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Shen, L. Soliton solutions for a class of critical Schrödinger equations with Stein–Weiss convolution parts in \(\mathbb {R}^2\). Monatsh Math (2024). https://doi.org/10.1007/s00605-024-01980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00605-024-01980-0

Keywords

Mathematics Subject Classification

Navigation