Skip to main content
Log in

Solitary waves for a class of quasilinear Schrödinger equations in dimension two

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we prove the existence and concentration behavior of positive ground state solutions for quasilinear Schrödinger equations of the form −ε 2Δu + V(z)uε 2 [Δ(u 2)]u = h(u) in the whole two-dimension space where ε is a small positive parameter and V is a continuous potential uniformly positive. The main feature of this paper is that the nonlinear term h(u) is allowed to enjoy the critical exponential growth with respect to the Trudinger–Moser inequality and also the presence of the second order nonhomogeneous term [Δ(u 2)]u which prevents us to work in a classical Sobolev space. Using a version of the Trudinger–Moser inequality, a penalization technique and mountain-pass arguments in a nonstandard Orlicz space we establish the existence of solutions that concentrate near a local minimum of V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves C.O., do Ó J.M., Souto M.A.: Local mountain-pass for a class of elliptic problems in \({\mathbb{R}^N}\) involv- ing critical growth. Nonlinear Anal. 46, 495–510 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin J.P., Ekeland I.: Applied Nonlinear Analysis. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York (1984)

    Google Scholar 

  3. Bass F., Nasanov N.N.: Nonlinear electromagnetic spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  4. Berestycki H., Lions P.L.: Nonlinear scalar field equations I: existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  5. Borovskii A., Galkin A.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1983)

    Google Scholar 

  6. Brandi H., Manus C., Mainfray G., Lehner T., Bonnaud G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B5, 3539–3550 (1993)

    Google Scholar 

  7. Cao D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \({\mathbb{R}^2}\) . Comm. Partial Differ. Equ. 17, 407–435 (1992)

    Article  MATH  Google Scholar 

  8. Chen J., Guo B.: Multiple nodal bound states for a quasilinear Schrödinger equation. J. Math. Phys. 46, 23502 (2005)

    Article  Google Scholar 

  9. Chen J., Guo B.: Multiple nodal bound states for a quasilinear Schrödinger equation. J. Math. Phys. 46, 123502 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chen X.L., Sudan R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  11. Colin M., Jeanjean L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Bouard A., Hayashi N., Saut J.: Global existence of small solutions to a relativistic nonlinear Schröndinger equation. Comm. Math. Phys. 189, 73–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. de Figueiredo D.G., Miyagaki O.H., Ruf B.: Elliptic equations in \({\mathbb{R}^2}\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    Article  MATH  Google Scholar 

  14. de Figueiredo D.G., do Ó J.M., Ruf B.: Critical and subcritical elliptic systems in dimension two. Indiana Univ. Math. J. 53, 1037–1054 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. del Pino M., Felmer P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. do Ó J.M.: Semilinear Dirichlet problems for the N−Laplacian in \({\mathbb{R}^N}\) with nonlinearities in critical growth range. Differ. Integr. Equ. 9, 967–979 (1996)

    MATH  Google Scholar 

  17. do Ó J.M.: N-Laplacian equations in \({\mathbb{R}^N}\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. do Ó J.M., Souto M.A.: On a class of nonlinear Schrödinger equations in \({\mathbb{R}^2}\) involving critical growth. J. Differ. Equ. 174, 289–311 (2001)

    Article  MATH  Google Scholar 

  19. do Ó J.M., Ruf B.: On a Schrödinger equation with periodic potential and critical growth in \({\mathbb R\sp 2}\). NoDEA Nonlinear Differ. Equ. Appl. 13, 167–192 (2006)

    Article  MATH  Google Scholar 

  20. do Ó J.M., Miyagaki O., Soares S.: Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Anal. 67, 3357–3372 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Floer A., Weinstein A.: Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^N}\). In: Mathematical Analysis and Applications, Adv. Math. Suppl. Stud., Part A, vol. 7a, pp. 369–402. Academic Press, New York-London (1981)

  23. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equation of Second Order, 2nd ed. Springer-Verlag, New York (1983)

    Google Scholar 

  24. Hasse R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equation. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  25. Jeanjean L., Tanaka K.: A positive solution for a nonlinear Schrödinger equation on \({\mathbb{R}^N}\). Indiana Univ. Math. J. 54, 443–464 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kavian O.: Introduction á la théorie des points critiques et applications aux problèmes elliptiques. Springer-Verlag, Paris (1993)

    MATH  Google Scholar 

  27. Kosevich A.M., Ivanov B.A., Kovalev A.S.: Magnetic solitons in superfluid films. Phys. Rep. 194, 117–238 (1990)

    Article  Google Scholar 

  28. Kurihura S.: Large-amplitude quasi-solitons in superfluids films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  29. Laedke E., Spatschek K.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1963)

    Article  MathSciNet  Google Scholar 

  30. Lions P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré Anal. Non Linéare 1, 223–283 (1984)

    MATH  Google Scholar 

  31. Liu J., Wang Y., Wang Z.Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)

    Article  MATH  Google Scholar 

  32. Liu J., Wang Y., Wang Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Comm. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  33. Makhankov V.G., Fedyanin V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  34. Moser J.: A sharp form of an inequality by. N Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  Google Scholar 

  35. Ni W.M., Takagi I.: On the shape of least-energy solutions to semilinear Neumann problem. Comm. Pure Appl. Math. 14, 819–851 (1991)

    Article  MathSciNet  Google Scholar 

  36. Poppenberg M., Schmitt K., Wang Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Quispel G.R.W., Capel H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  38. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 272–291 (1992)

    Article  MathSciNet  Google Scholar 

  39. Ritchie B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, 687–689 (1994)

    Article  Google Scholar 

  40. Ruf B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb R\sp 2}\). J. Funct. Anal. 219, 340–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Takeno S., Homma S.: Classical planar Heinsenberg ferromagnet, complex scalar fields and nonlinear excitations. Progr. Theoret. Physics 65, 172–189 (1981)

    Article  MathSciNet  Google Scholar 

  42. Trudinger N.S.: On the imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MATH  MathSciNet  Google Scholar 

  43. Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153, 229–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marcos do Ó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Ó, J.M., Severo, U. Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. 38, 275–315 (2010). https://doi.org/10.1007/s00526-009-0286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0286-6

Mathematics Subject Classification (2000)

Navigation