Skip to main content
Log in

Ultrasensitive colorimetric detection of Staphylococcus aureus using wheat germ agglutinin and IgY as a dual-recognition strategy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel colorimetric platform was designed for the determination of S. aureus by utilizing a dual-recognition strategy, where wheat germ agglutinin (WGA)-functionalized magnetic beads were served as separation elements to capture and enrich S. aureus efficiently from the matrix. Horseradish peroxidase (HRP) labeled chicken anti-protein A IgY (HRP-IgY) was used to label the captured S. aureus. A chicken IgY was introduced as a signal tracer to bind with staphylococcal protein A (SPA) on the surface of S. aureus, which can circumvent the interference from protein G-producing Streptococcus. Subsequently, the colorimetric signal was achieved by an HRP-catalyzed reaction, which was amplified by HRP-IgY bound by approximately 80,000 SPA molecules on one S. aureus. The entire detection process could be accomplished within 90 min. Under optimal conditions, the linear response of different S. aureus concentrations ranged from 7.8 × 102 to 2.0 × 105 CFU/mL and the limit of detection reached down to 3.9 × 102 CFU/mL. Some common non-target bacteria yielded negative results, indicating the excellent specificity of the method. The developed strategy was successfully applied to the determination of S. aureus in various types of samples with satisfactory recoveries. Therefore, the novel dual-recognition strategy possessed the advantages of high sensitivity, specificity, and low cost and exhibited considerable potential as a promising tool to defend public health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study were included in this published article (and its supplementary information files).

References

  1. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762. https://doi.org/10.1016/S1473-3099(05)70295-4

    Article  PubMed  Google Scholar 

  2. Xiang YZ, Wu G, Yang LY, Yang XJ, Zhang YM, Lin LB, Deng XY, Zhang QL (2022) Antibacterial effect of bacteriocin XJS01 and its application as antibiofilm agents to treat multidrug-resistant Staphylococcus aureus infection. Int J Biol Macromol 196:13–22. https://doi.org/10.1016/j.ijbiomac.2021.11.136

    Article  CAS  PubMed  Google Scholar 

  3. Suaifan GARY, Alhogail S, Zourob M (2017) Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens Bioelectron 90:230–237. https://doi.org/10.1016/j.bios.2016.11.047

    Article  CAS  PubMed  Google Scholar 

  4. Zhan L, Li CM, Fu ZF, Zou HY, Huang CZ (2022) Dual-aptamer-based enzyme linked plasmonic assay for pathogenic bacteria detection. Colloid Surface B 214:112471. https://doi.org/10.1016/j.colsurfb.2022.112471

    Article  CAS  Google Scholar 

  5. Eby JC, Richey MM, Platts-Mills JA, Mathers AJ, Novicoff WM, Cox HL (2018) A healthcare improvement intervention combining nucleic acid microarray testing with direct physician response for management of Staphylococcus aureus bacteremia. Clin Infect Dis 66:64–71. https://doi.org/10.1093/cid/cix727

    Article  PubMed  Google Scholar 

  6. Mathur A, Gupta R, Kondal S, Wadhwa S, Pudake RN, Shivani KR, Pundir CS, Narang J (2018) A new tactics for the detection of S. aureus via paper based geno-interface incorporated with graphene nano dots and zeolites. Int J Biol Macromol 112:364–370. https://doi.org/10.1016/j.ijbiomac.2018.01.143

    Article  CAS  PubMed  Google Scholar 

  7. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654–1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu Y, Sun Y, Gu J, Yang F, Wu S, Zhang C, Ji X, Lv H, Muyldermans S, Wang S (2021) Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chem 353:129481. https://doi.org/10.1016/j.foodchem.2021.129481

    Article  CAS  PubMed  Google Scholar 

  9. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751. https://doi.org/10.1128/aem.63.10.3741-3751.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Yan C, Yang H, Yu J, Wei H (2017) Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry. Food Chem 234:332–338. https://doi.org/10.1016/j.foodchem.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  11. Gao H, Yang S, Han J, Xiong J, Kong W, Li C, Liao G, Fu Z (2015) Double-site recognition of pathogenic bacterial whole cells based on an antibiotic-affinity strategy. Chem Commun 51:12497–12500. https://doi.org/10.1039/C5CC02814K

    Article  CAS  Google Scholar 

  12. Wang M, Yang H, Wu Y, Fu Z (2019) Fluorescent analysis of Staphylococcus aureus by using daptomycin and immunoglobulin G for dual sites affinity. Spectrochim Acta A 215:340–344. https://doi.org/10.1016/j.saa.2019.02.088

    Article  CAS  Google Scholar 

  13. Zhang Y, Tan W, Zhang Y, Mao H, Shi S, Duan L, Wang H, Yu J (2019) Ultrasensitive and selective detection of Staphylococcus aureus using a novel IgY-based colorimetric platform. Biosens Bioelectron 142:111570. https://doi.org/10.1016/j.bios.2019.111570

    Article  CAS  PubMed  Google Scholar 

  14. Sun R, Zou H, Zhang Y, Zhang X, Chen L, Lv R, Sheng R, Du T, Li Y, Wang H, Qi Y (2022) Vancomycin recognition and induced-aggregation of the Au nanoparticles through freeze-thaw for foodborne pathogen Staphylococcus aureus detection. Anal Chim Acta 1190:339253. https://doi.org/10.1016/j.aca.2021.339253

    Article  CAS  PubMed  Google Scholar 

  15. Yan C, Zhang Y, Yang H, Yu J, Wei H (2017) Combining phagomagnetic separation with immunoassay for specific, fast and sensitive detection of Staphylococcus aureus. Talanta 170:291–297. https://doi.org/10.1016/j.talanta.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Zhang Y, Zhang Y, Li H, Yang H, Wei H (2016) Sensitive and rapid detection of Staphylococcus aureus in milk via cell binding domain of lysin. Biosens Bioelectron 77:366–371. https://doi.org/10.1016/j.bios.2015.09.058

    Article  CAS  PubMed  Google Scholar 

  17. He Y, Wang Y, Shi Y, Fu Z (2018) Molecular recognition strategy for detection and antimicrobial susceptibility testing of Staphylococcus aureus by utilizing teicoplanin and porcine IgG as indicator molecules. Sensor Actuat B - Chem 267:51–57. https://doi.org/10.1016/j.snb.2018.04.015

    Article  CAS  Google Scholar 

  18. Yang S, Ouyang H, Su X, Gao H, Kong W, Wang M, Shu Q, Fu Z (2016) Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosens Bioelectron 78:174–180. https://doi.org/10.1016/j.bios.2015.11.041

    Article  CAS  PubMed  Google Scholar 

  19. Mikaelyan MV, Poghosyan GG, Hendrickson OD, Dzantiev BB, Gasparyan VK (2017) Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: a simple photometric assay. Anal Chim Acta 981:80–85. https://doi.org/10.1016/j.aca.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  20. Harito JB, Campbell AT, Tysnes KR, Robertson LJ (2017) Use of lectin-magnetic separation (LMS) for detecting Toxoplasma gondii oocysts in environmental water samples. Water Res 127:68–76. https://doi.org/10.1016/j.watres.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  21. Neumann D, Lehr CM, Lenhof HP, Kohlbacher O (2004) Computational modeling of the sugar-lectin interaction. Adv Drug Deliv Rev 56:437–457. https://doi.org/10.1016/j.addr.2003.10.019

    Article  CAS  PubMed  Google Scholar 

  22. Yang G, Meng X, Wang Y, Yan M, Aguilar ZP, Xu H (2019) 2-Step lectin-magnetic separation (LMS) strategy combined with AuNPs-based colorimetric system for S. aureus detection in blood. Sensor Actuat B - Chem 279:87–94. https://doi.org/10.1016/j.snb.2018.09.112

    Article  CAS  Google Scholar 

  23. Zhang Y, Tan W, Zhang L, Shi S, Niu Y, Yang X, Qiao J, Wang H (2019) Highly sensitive and selective colorimetric determination of Staphylococcus aureus via chicken anti-protein A IgY antibody. Anal Methods 11:3665–3670. https://doi.org/10.1039/C9AY00818G

    Article  CAS  Google Scholar 

  24. Reddy PK, Shekar A, Kingston JJ, Sripathy MH, Batra H (2013) Evaluation of IgY capture ELISA for sensitive detection of alpha hemolysin of Staphylococcus aureus without staphylococcal protein A interference. J Immunol Methods 391:31–38. https://doi.org/10.1016/j.jim.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  25. Yao S, Li J, Pang B, Wang X, Shi Y, Song X, Xu K, Wang J, Zhao C (2020) Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim Acta 187:504. https://doi.org/10.1007/s00604-020-04473-7

    Article  CAS  Google Scholar 

  26. Vikinge TP, Askendal A, Liedberg B, Lindahl T, Tengvall P (1998) Immobilized chicken antibodies improve the detection of serum antigens with surface plasmon resonance (SPR). Biosens Bioelectron 13:1257–1262. https://doi.org/10.1016/s0956-5663(98)00085-2

    Article  CAS  PubMed  Google Scholar 

  27. Shi X, Sun H, Li H, Wei S, Jin J, Zhao C, Wang J, Li H (2022) Preparation of IgY oriented conjugated Fe3O4 MNPs as immunomagnetic nanoprobe for increasing enrichment efficiency of Staphylococcus aureus based on adjusting the pH of the solution system. Front Public Health 10:865828. https://doi.org/10.3389/fpubh.2022.865828

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li F, Yang G, Aguilar ZP, Xiong Y, Xu H (2018) Affordable and simple method for separating and detecting ovarian cancer circulating tumor cells using BSA coated magnetic nanoprobes modified with folic acid. Sensor Actuat B - Chem 262:611–618. https://doi.org/10.1016/j.snb.2018.02.038

    Article  CAS  Google Scholar 

  29. Huang J, Chen G, Sun Y, Huang Y, Liu L, Xu H (2022) A dual-recognition strategy for Staphylococcus aureus detection using teicoplanin-modified magnetic nanoparticles and IgG-functionalized quantum dots. Food Anal Method 15:1968–1978. https://doi.org/10.1007/s12161-022-02256-9

    Article  Google Scholar 

  30. Meng X, Yang G, Li F, Liang T, Lai W, Xu H (2017) Sensitive detection of Staphylococcus aureus with vancomycin-conjugated magnetic beads as enrichment carriers combined with flow cytometry. ACS Appl Mater Inter 9:21464–21472. https://doi.org/10.1021/acsami.7b05479

    Article  CAS  Google Scholar 

  31. Wang Y, Wang Y, Wang H, Ji W, Sun J, Yan Y (2014) An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1. Food Control 40:41–45. https://doi.org/10.1016/j.foodcont.2013.11.025

    Article  CAS  Google Scholar 

  32. Zhang Y, Yang H, Yu J, Wei H (2016) Rapid and sensitive detection of HIV-1 p24 antigen by immunomagnetic separation coupled with catalytic fluorescent immunoassay. Anal Bioanal Chem 408:6115–6121. https://doi.org/10.1007/s00216-016-9722-6

    Article  CAS  PubMed  Google Scholar 

  33. Xiong J, Wang W, Zhou Y, Kong W, Wang Z, Fu Z (2016) Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183:1507–1512. https://doi.org/10.1007/s00604-016-1769-8

    Article  CAS  Google Scholar 

  34. Lotan R, Sharon N, Mirelman D (1975) Interaction of wheat-germ agglutinin with bacterial cells and cell-wall polymers. Eur J Biochem 55:257–262. https://doi.org/10.1111/j.1432-1033.1975.tb02158.x

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Liu J, Chen G, Feng X, Deng M, Mu D, Xu Q, Xu H (2022) An integrated system using phenylboronic acid functionalized magnetic beads and colorimetric detection for Staphylococcus aureus. Food Control 133:108633. https://doi.org/10.1016/j.foodcont.2021.108633

    Article  CAS  Google Scholar 

  36. Wang Z, Feng X, Xiao F, Bai X, Xu Q, Xu H (2022) A novel PEG-mediated boric acid functionalized magnetic nanomaterials based fluorescence biosensor for the detection of Staphylococcus aureus. Microchem J 178:107379. https://doi.org/10.1016/j.microc.2022.107379

    Article  CAS  Google Scholar 

  37. Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, Liu S, Wang Y, Zhang D, Wang S, Chen X (2018) Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B 6:3751–3761. https://doi.org/10.1039/c8tb00504d

    Article  CAS  PubMed  Google Scholar 

  38. Cheng S, Tu Z, Zheng S, Cheng X, Han H, Wang C, Xiao R, Gu B (2021) An efficient SERS platform for the ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes via wheat germ agglutinin-modified magnetic SERS substrate and streptavidin/aptamer co-functionalized SERS tag. Anal Chim Acta 1187:339155. https://doi.org/10.1016/j.aca.2021.339155

    Article  CAS  PubMed  Google Scholar 

  39. Yang G, Huang M, Wang Y, Chen G, Zhao Y, Xu H (2019) Streptavidin-exposed magnetic nanoparticles for lectin magnetic separation (LMS) of Staphylococcus aureus prior to three quantification strategies. Microchim Acta 186:813. https://doi.org/10.1007/s00604-019-3978-4

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 81702099), Key Scientific Research Projects of Key Scientific and Technological Projects of Henan Province (Nos. 222102310476 and 222102310310), and Key Scientific Research Projects of Higher Education Institutions in Henan Province (Grant No. 23A330004).

Author information

Authors and Affiliations

Authors

Contributions

YZ: conceptualization, methodology, investigation, and writing—original draft. GT: investigation and methodology. XS: investigation and formal analysis. XY: investigation and methodology. YZ: validation, software, and data curation. WT: methodology. LD: formal analysis. SG: conceptualization and validation. JY: resources, writing—review and editing, supervision, and project administration.

Corresponding authors

Correspondence to Liangwei Duan, Shunxiang Gao or Junping Yu.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11937 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tian, G., Sun, X. et al. Ultrasensitive colorimetric detection of Staphylococcus aureus using wheat germ agglutinin and IgY as a dual-recognition strategy. Microchim Acta 191, 209 (2024). https://doi.org/10.1007/s00604-024-06288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06288-2

Keywords

Navigation