Skip to main content
Log in

Ag nanoparticle in situ decorated on Ti3C2Tx with excellent SERS and EIS immunoassay performance for beta-human chorionic gonadotropin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal carbides, nitrides, and carbonitrides (MXene), with excellent optical and electrical properties, are promising substrates for surface-enhanced Raman scattering (SERS) and electrochemical sensors. Therefore, a unique 3D-decorated structure containing silver (Ag) nanoparticles and Ti3C2Tx was designed as the substrates of SERS and electrochemical impedance spectroscopy (EIS) immunosensors. The Ag/Ti3C2Tx composite significantly increases Raman intensity, which is attributed to the synergistic effect of Ti3C2Tx and Ag nanoparticles. Based on the SERS performance of the Ag/Ti3C2Tx composite, the magnetic properties of Fe3O4 and the specificity of antigen–antibody, a sandwich-structured SERS immunosensor is constructed, which can effectively detect trace amounts of beta-human chorionic gonadotropin (β-hCG). The SERS immunosensor exhibits a wide linear range of 5.0 × 10–6–1.0 mIU mL−1, and a low detection limit of 9.0 × 10–7 mIU mL−1. Meanwhile, the Ag/Ti3C2Tx-based EIS immunosensor is constructed for the portable detection of β-hCG, which exhibits a wide linear range of 5.0 × 10–2–1.0 × 102 mIU mL−1, a low detection limit of 9.5 × 10–3 mIU mL−1. Moreover, two immunosensors can be used to detect actual serum samples with satisfactory recovery (98.5–102.2%). This work could guide the design of low-cost, sensitive, flexible, and portable biosensors.

Graphical abstract

The SERS and EIS substrates composited with Ti3C2Tx and Ag nanoparticles enable excellent performance for detecting β-hCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He Y, Li Y, Hun X (2010) Polymer nanoparticles as fluorescent labels in a fluoroimmunoassay for human chorionic gonadotropin, Microchim. Acta 171:393–398. https://doi.org/10.1007/s00604-010-0376-3

    Article  CAS  Google Scholar 

  2. Chu C, Li L, Li S, Li M, Ge S, Yu J, Yan M, Song X (2013) Fluorescence-based immunoassay for human chorionic gonadotropin based on polyfluorene-coated silica nanoparticles and polyaniline-coated Fe3O4 nanoparticles, Microchim. Acta 180:1509–1516. https://doi.org/10.1007/s00604-013-1067-7

    Article  CAS  Google Scholar 

  3. Lu Y, Wang H, Shi XM, Ding C, Fan GC (2022) Photoanode-supported cathodic immunosensor for sensitive and specific detection of human chorionic gonadotropin. Anal Chim Acta 1199:339560. https://doi.org/10.1016/j.aca.2022.339560

    Article  CAS  PubMed  Google Scholar 

  4. Yang D, Lei L, Yang K, Gao K, Jia T, Wang L, Wang X, Xue C (2022) An immunochromatography strip with peroxidase-mimicking ferric oxyhydroxide nanorods-mediated signal amplification and readout. Microchim Acta 189:58–69. https://doi.org/10.1007/s00604-021-05085-5

  5. Huang W, Zhang T, Hu X, Wang Y, Wang JM (2017) Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species. Microchim Acta 185:37. https://doi.org/10.1007/s00604-017-2538-z

    Article  CAS  Google Scholar 

  6. Wang K, Li T, Cao B, Xu H, Cheng Y, Zheng C, Zheng W, Cui D (2022) Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms. Sensor Actuat A-Phys 333:113299. https://doi.org/10.1016/j.sna.2021.113299

    Article  CAS  Google Scholar 

  7. Tsai NC, Cheng LY, Yang TH, Hsu TY, Kung FT (2020) Serum β-human chorionic gonadotropin profile and its correlations with ultrasound parameters in low-lying-implantation ectopic pregnancy in the first trimester. J Obstet Gynaecol Res 46:844–850. https://doi.org/10.1111/jog.14248

    Article  CAS  PubMed  Google Scholar 

  8. Jiang JL, Ma LW, Chen J, Zhang PC, Wu HX, Zhang ZJ, Wang SF, Yun W, Li YR, Jia JP, Liao JS (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184:2775–2782. https://doi.org/10.1007/s00604-017-2286-0

    Article  CAS  Google Scholar 

  9. Cao Y, Wang LN, Wang CY, Su D, Liu Y, Hu XY (2019) Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Microchim Acta 186:481. https://doi.org/10.1007/s00604-019-3597-0

    Article  CAS  Google Scholar 

  10. Zong XL, Zhu R, Guo XL (2015) Nanostructured gold microelectrodes for SERS and EIS measurements by incorporating ZnO nanorod growth with electroplating. Sci Rep 5:16454. https://doi.org/10.1038/srep16454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding Q, Kang Z, He X, Wang M, Lin M, Lin H, Yang DP (2019) Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole. Microchim Acta 186:453. https://doi.org/10.1007/s00604-019-3543-1

    Article  CAS  Google Scholar 

  12. Guo KY, Sharma A, Toh RJ, Alvárez de Eulate E, Gengenbach TR, Cetó X, Voelcker NH, Prieto-Simón B (2019) Porous silicon nanostructures as effective faradaic electrochemical sensing platforms. Adv Funct Mater 29:1809206. https://doi.org/10.1002/adfm.201809206

    Article  CAS  Google Scholar 

  13. Marquestaut N, Martin A, Talaga D, Servant L, Ravaine S, Reculusa S, Bassani DM, Gillies E, Lagugne-Labarthet F (2008) Raman enhancement of azobenzene monolayers on substrates prepared by Langmuir-BLoDgett deposition and electron-beam lithography techniques. Langmuir 24:11313–11321. https://doi.org/10.1021/la801697u

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Bao WZ, Jaumaux P, Zhang ST, Wang CY, Wang GX (2019) MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interf 6:1802004. https://doi.org/10.1002/admi.201802004

    Article  CAS  Google Scholar 

  15. Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y (2017) Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J Phys Chem C 121:19983–19988. https://doi.org/10.1021/acs.jpcc.7b08180

    Article  CAS  Google Scholar 

  16. Yang J, Wang TY, Guo X, Sheng XX, Li JB, Wang CY, Wang GX (2021) Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes. Nano Res. https://doi.org/10.1007/s12274-021-3933-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barveen NR, Wang TJ, Chang YH (2021) A photochemical approach to anchor au NPs on MXene as a prominent SERS substrate for ultrasensitive detection of chlorpromazine. Microchim Acta 189:16. https://doi.org/10.1007/s00604-021-05118-z

    Article  CAS  Google Scholar 

  18. Xie XJ, Zhu YM, Li F, Zhou XW, Tao X (2019) Preparation and characterization of Ti3C2Tx with SERS properties. Sci Chin 62:1202–1209. https://doi.org/10.1007/s11431-018-9359-4

    Article  CAS  Google Scholar 

  19. Peng Y, Cai P, Yang LL, Liu YY, Zhu LF, Zhang QQ, Liu JJ, Huang ZG, Yang Y (2020) Theoretical and experimental studies of Ti3C2 MXene for surface-enhanced Raman spectroscopy-based sensing. ACS Omega 5:26486–26496. https://doi.org/10.1021/acsomega.0c03009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adomavičiūtė-Grabusovė S, Ramanavičius S, Popov A, Šablinskas V, Gogotsi O, Ramanavičius A (2021) Selective enhancement of SERS spectral bands of salicylic acid adsorbate on 2D Ti3C2Tx-based MXene film. Chemosensors 9:223. https://doi.org/10.3390/chemosensors9080223

    Article  CAS  Google Scholar 

  21. Liu RY, Jiang L, Yu ZZ, Jing XF, Liang X, Wang D, Yang B, Lu CX, Zhou W, Jin SZ (2021) MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy. Sensor Actuat B-Chem 333:129581. https://doi.org/10.1016/j.snb.2021.129581

    Article  CAS  Google Scholar 

  22. Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sensor Actuat. B-Chem 218:60–66. https://doi.org/10.1016/j.snb.2015.04.090

    Article  CAS  Google Scholar 

  23. Wang F, Yang CH, Duan CY, Xiao D, Tang Y, Zhu JF (2014) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor. J Electrochem Soc 162:B16–B21. https://doi.org/10.1149/2.0371501jes

    Article  CAS  Google Scholar 

  24. Lim KK, Jiao TF, Xing RR, Zou GD, Zhou JX, Zhang LX, Peng QM (2018) Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci China Mater 61:728–736. https://doi.org/10.1007/s40843-017-9196-8

    Article  CAS  Google Scholar 

  25. Zhang ZW, Li HN, Zou GD, Fernandez C, Liu BZ, Zhang QR, Hu J, Peng QM (2016) Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity, ACS Sustain. Chem Eng 4:6763–6771. https://doi.org/10.1021/acssuschemeng.6b01698

    Article  CAS  Google Scholar 

  26. Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M (2016) One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci Rep 6:32049. https://doi.org/10.1038/srep32049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang XX, Wang R, Jiao TF, Zou GD, Zhan FK, Yin JJ, Zhang LX, Zhou JM, Peng QM (2019) Facile preparation of hierarchical AgNP-Loaded MXene/Fe3O4/Polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omeg 4:1897–1906. https://doi.org/10.1021/acsomega.8b03615

    Article  CAS  Google Scholar 

  28. Su XH, Zhang J, Mu H, Zhao JG, Wang ZJ, Zhao ZH, Han CX, Ye ZM (2018) Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene. J Alloys Compd 752:32–39. https://doi.org/10.1016/j.jallcom.2018.04.152

    Article  CAS  Google Scholar 

  29. Yuan KS, Mei QS, Guo XJ, Xu YW, Yang DT, Sanchez BJ, Sheng BB, Liu CS, Hu ZW, Yu GC, Ma HM, Gao H, Haisch C, Niessner R, Jiang ZJ, Zhou HB (2018) Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem Sci 9:8781–8795. https://doi.org/10.1039/C8SC04637A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi TD, Liang P, Zhang XB, Zhang D, Shu HB, Huang J, Yu Z, Xu YQ (2020) Synergistic enhancement effect of MoO3@Ag hybrid nanostructures for boosting selective detection sensitivity. Spectrochim Acta A 241:118611. https://doi.org/10.1016/j.saa.2020.118611

    Article  CAS  Google Scholar 

  31. Yang J, Li JB, Wang TY, Notten PHL, Ma H, Liu ZG, Wang CY, Wang GX (2020) Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem Eng J 407:127169. https://doi.org/10.1016/j.cej.2020.127169

    Article  CAS  Google Scholar 

  32. Cialla-May D, Zheng XS, Weber K, Popp J (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46:3945–3961. https://doi.org/10.1039/C7CS00172J

    Article  CAS  PubMed  Google Scholar 

  33. Ling X, Huang SX, Deng SB, Mao NN, Kong J, Dresselhaus MS, Zhang J (2015) Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res 48:1862–1870. https://doi.org/10.1021/ar500466u

    Article  CAS  PubMed  Google Scholar 

  34. Wang CY, Zeng Y, Shen AG, Hu JM (2018) A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles. Anal Methods 10:5622–5628. https://doi.org/10.1039/C8AY01966E

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21375116), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Jiangsu Province research program on analytical methods and techniques on the shared platform of mass-productive instruments and equipment (BZ 201409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxian Wei or Chengyin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2808 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xu, C., Yang, Q. et al. Ag nanoparticle in situ decorated on Ti3C2Tx with excellent SERS and EIS immunoassay performance for beta-human chorionic gonadotropin. Microchim Acta 189, 348 (2022). https://doi.org/10.1007/s00604-022-05426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05426-y

Keywords

Navigation