Skip to main content
Log in

A novel reverse fluorescent immunoassay approach for sensing human chorionic gonadotropin based on silver-gold nano-alloy and magnetic nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel and environmentally friendly reverse fluorescent immunoassay approach was proposed and utilized for sensing human chorionic gonadotropin (HCG) in human serum by coupling a newly prepared and highly fluorescent glutathione-stabilized silver-gold nano-alloy (GSH-AgAuNAs) with magnetic nanoparticles (MNPs). To construct such a reverse system, fluorescent GSH-AgAuNAs and MNPs were first prepared and bio-functionalized with monoclonal antibodies (Mab-I and Mab-II) toward HCG antigen, respectively. Then, the GSH-AgAuNAs functionalized with Mab-I were incubated with HCG, followed by the addition of MNPs attached to Mab-II. Thereafter, a sandwich-type immunoassay could be constructed for determination of HCG owing to the antibody-antigen recognition between the functionalized GSH-AgAuNAs and MNPs. Afterwards, a magnetic collection was employed. Hence, the amount of GSH-AgAuNAs would be reduced through an immuno-magnetic separation, thus weakening the fluorescent intensity. Different from conventional immunoassay, our work determined the quantitative signal by measuring the decreasing gradient fluorescent intensity. Under optimal conditions, the developed reverse method exhibited a wide linear range of 0.5–600 ng mL−1 toward HCG with a detection limit of 0.25 ng mL−1. Additionally, the proposed immunoassay was validated using spiked samples, illustrating a satisfactory result in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ding X, Yang KL (2013) Anal Chem 85:10710–10716

    Article  CAS  Google Scholar 

  2. Yang L, Zhao H, Fan S, Deng S, Lv Q, Lin J, Li CP (2014) Biosens Bioelectron 57:199–206

    Article  CAS  Google Scholar 

  3. Lund H, Snilsberg AH, Paus E, Halvorsen TG, Hemmersbach P, Reubsaet L (2013) Anal Bioanal Chem 405:1569–1576

    Article  CAS  Google Scholar 

  4. Mäkinen J, Anttila L, Irjala K, Salmi T, Kaihola HL (1987) Eur J Obstet Gynecol Reprod Biol 26:219–224

    Article  Google Scholar 

  5. Khazaeli MB, Hedayat MM, Hatch KD (1986) Am J Obstet Gynecol 155:320–324

    Article  CAS  Google Scholar 

  6. Longhi B, Chichehian B, Causse A, Caraux J (1986) J Immunol Methods 92:89–95

    Article  CAS  Google Scholar 

  7. Zheng X, Yao T, Zhu Y, Shi S (2015) Biosens Bioelectron 66:103–108

    Article  CAS  Google Scholar 

  8. Diez I, Ras RHA (2011) Nanoscale 3:1963–1970

    Article  CAS  Google Scholar 

  9. Guo S, Wang E (2011) Nano Today 6:240–264

    Article  CAS  Google Scholar 

  10. Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2010) Nano Lett 10:3106–3110

    Article  CAS  Google Scholar 

  11. Huang CC, Chiang CK, Lin ZH, Lee KH, Chang HT (2008) Anal Chem 80:1497–1504

    Article  CAS  Google Scholar 

  12. Shiang YC, Huang CC, Chang HT (2009) Chem Commun 23:3437–3439

    Article  Google Scholar 

  13. Zhao Q, Chen S, Zhang L, Huang H, Zeng Y, Liu F (2014) Anal Chim Acta 852:236–243

    Article  CAS  Google Scholar 

  14. Liu Y, Ai K, Cheng X, Huo L, Lu L (2010) Adv Funct Mater 20:951–956

    Article  CAS  Google Scholar 

  15. Shang L, Dong S (2008) J Mater Chem 18:4636–4640

    Article  CAS  Google Scholar 

  16. Herricks T, Chen J, Xia Y (2004) Nano Lett 4:2367–2371

    Article  CAS  Google Scholar 

  17. Raghuveer MS, Agrawal S, Bishop N, Ramanath G (2006) Chem Mater 18:1390–1393

    Article  CAS  Google Scholar 

  18. Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) J Phys Chem C 111:10806–10813

    Article  CAS  Google Scholar 

  19. Larmour IA, Graham D (2011) Analyst 136:3831–3853

    Article  CAS  Google Scholar 

  20. Udayabhaskararao T, Sun Y, Goswami N, Pal SK, Balasubramanian K, Pradeep T (2012) Angew Chem Int Ed 51:2155–2159

    Article  CAS  Google Scholar 

  21. Chen YP, Zou MQ, Wang DN, Li YL, Xue Q, Xie MX, Qi C (2013) Biosens Bioelectron 43:6–11

    Article  CAS  Google Scholar 

  22. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi VK, Ulman A, Cowman M, Gross RA (2003) J Am Chem Soc 125:1684–1685

    Article  CAS  Google Scholar 

  23. Gélinas S, Finch JA, Bohme P (2000) Colloids Surf A 172:103–112

    Article  Google Scholar 

  24. Gu H, Yang Z, Gao J, Chang CK, Xu B (2005) J Am Chem Soc 127:34–35

    Article  CAS  Google Scholar 

  25. Chen LX, Liu T, Thurnauer MC, Csencsits R, Rajh T (2002) J Phys Chem B 106:8539–8546

    Article  CAS  Google Scholar 

  26. Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) J Phys Chem B 106:10543–10552

    Article  CAS  Google Scholar 

  27. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) J Am Chem Soc 126:9938–9939

    Article  CAS  Google Scholar 

  28. Botasini S, Heijo G, Mendez E (2013) Anal Chim Acta 800:1–11

    Article  CAS  Google Scholar 

  29. Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) J Am Chem Soc 125:10192–10193

    Article  CAS  Google Scholar 

  30. Zhang Y, Guo Y, Quirke P, Zhou D (2013) Nanoscale 5:5027–5035

    Article  CAS  Google Scholar 

  31. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  32. Cutler J, Auyeung E, Mirkin C (2012) J Am Chem Soc 134:1376–1391

    Article  CAS  Google Scholar 

  33. Vashist SK, Czilwik G, Oordt VT, Stetten FV, Zengerle R, Schneider EM, Luong JHT (2014) Anal Biochem 456:32–37

    Article  CAS  Google Scholar 

  34. Fan X, Li X (2012) New Carbon Mater 27:111–116

    Article  CAS  Google Scholar 

  35. Deng YH, Yang WL, Wang CC, Fu SK (2003) Adv Mater 15:1729–1732

    Article  CAS  Google Scholar 

  36. Wen T, Qu F, Li NB, Luo HQ (2012) Anal Chim Acta 749:56–62

    Article  CAS  Google Scholar 

  37. Wu Z, Jin R (2010) Nano Lett 10:2568–2573

    Article  CAS  Google Scholar 

  38. Tang D, Yuan R, Chai Y (2006) J Phys Chem B 110:11640–11646

    Article  CAS  Google Scholar 

  39. Zhuo B, Li Y, Zhang A, Lu F, Chen Y, Gao W (2014) J Mater Chem B 2:3263–3270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the Natural Science Foundation of Guangdong Province (No. S2011010005208 and No. 2014A030313480), the Science & Technology Project of Guangdong Province (No. 2013B030600001), and the Guangdong High Education Fund of Science and Technology Innovation (No. 2013KJCX0078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Gao.

Ethics declarations

1. This manuscript has not been submitted to more than one journal for simultaneous consideration.

2. This manuscript has not been published previously (partly or in full).

3. A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time.

4. No data have been fabricated or manipulated (including images) to support the conclusions.

5. No data, text, or theories by others are presented as if they were the authors’ own.

6. Consent to submit has been received from all co-authors and responsible authorities.

Additional information

Xiaopeng Huang and Yuqin Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, Y., Huang, X. et al. A novel reverse fluorescent immunoassay approach for sensing human chorionic gonadotropin based on silver-gold nano-alloy and magnetic nanoparticles. Anal Bioanal Chem 408, 619–627 (2016). https://doi.org/10.1007/s00216-015-9144-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9144-x

Keywords

Navigation