Skip to main content
Log in

Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) sensor was constructed for the detection of non-electroactive malathion. It is based on the use of a hierarchical CuO material derived from a Cu-BTC metal-organic framework (where BTC stands for benzene-1,3,5-tricarboxylic acid). The modified CuO was obtained by calcination of Cu-BTC at a high temperature (300 °C) and possesses a high photocurrent conversion efficiency. Under irradiation with visible light and in the presence of malathion, the formation of the CuO-malathion complex on the CuO gave rise to an increase in steric hindrance. This results in a decrease in photocurrent. This novel PEC detection method has a lower detection limit of 8.6 × 10−11 mol L−1 and a wide linear range (1.0 × 10−10 ~ 1.0 × 10−5 mol L−1).

Schematic presentation of the Cu-BTC MOF derived photoelectrochemical sensor for non-electroactive malathion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Berijani S, Assadi Y, Anbia M, Milani Hosseini M-R, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection-Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123(1):1–9

    Article  CAS  Google Scholar 

  2. Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol 6(3):710–718

    Article  CAS  Google Scholar 

  3. Sun X, Wang X (2010) Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. Biosens Bioelectron 25(12):2611–2614

    Article  CAS  Google Scholar 

  4. Morozova VS, Levashova AI, Eremin SA (2005) Determination of pesticides by enzyme immunoassay. J Anal Chem 60(3):202–217

    Article  CAS  Google Scholar 

  5. Wang Q, Yu P, Bai L, Bao R, Wang N, Cheng C, Liu Z, Yang M, Yang W, Guo Z (2017) Self-assembled nano-leaf/vein bionic structure of TiO2/MoS2 composites for photoelectric sensors. Nanoscale 9(46):18194–18201

    Article  CAS  Google Scholar 

  6. Ahmed MM, Kanimov KS, Moiz SA (2008) Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor. Thin Solid Films 516(21):7822–7827

    Article  CAS  Google Scholar 

  7. Fan D, Bao C, Khan MS, Wang C, Zhang Y, Liu Q, Zhang X, Wei Q (2018) A novel label-free photoelectrochemical sensor based on N, S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosens Bioelectron 106:14–20

    Article  CAS  Google Scholar 

  8. Dai Y, Kan X (2017) From non-electroactive to electroactive species: highly selective and sensitive detection based on a dual-template molecularly imprinted polymer electrochemical sensor. Chem Commun 53(86):11755–11758

    Article  CAS  Google Scholar 

  9. Dong J, Hou J, Jiang J, Ai S (2015) Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe. Anal Chim Acta 885:92–97

    Article  CAS  Google Scholar 

  10. Bavcon M, Trebse P, Zupancic-Kralj L (2003) Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere 50(5):595–601

    Article  CAS  Google Scholar 

  11. Yoshii K, Tonogai Y, Katakawa J, Ueno H, Nakamuro K (2007) Identification of carboxylesterase metabolites of residual malathion in wheat kernels using semi-micro radio liquid chromatography. J Health Sci 53(1):92–98

    Article  CAS  Google Scholar 

  12. Abnous K, Danesh N, Ramezani M, Alibolandi M, Emrani A, Lavaee P, Taghdisi S (2018) A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Microchim Acta 185(4):216

    Article  Google Scholar 

  13. Zhou H, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112(2):673–674

    Article  CAS  Google Scholar 

  14. Dang X, Zhao H, Wang X, Sailijiang T, Chen S, Quan X (2018) Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim Acta 185(7):345

    Article  Google Scholar 

  15. Cheng W, Pan J, Yang J, Zheng Z, Lu F, Chen Y, Gao W (2018) A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Microchim Acta 185:263

    Article  Google Scholar 

  16. Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112(2):782–835

    Article  CAS  Google Scholar 

  17. Zhu L, Liu XQ, Jiang H, Sun L (2017) Metal-organic frameworks for heterogeneous basic catalysis. Chem Rev 117(12):8129–8176

    Article  CAS  Google Scholar 

  18. Cao X, Tan C, Sindoro M, Zhang H (2017) Hybrid micro−/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 46(10):2660–2677

    Article  CAS  Google Scholar 

  19. Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3(12):9252

    Article  Google Scholar 

  20. Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7(12):1602391

    Article  Google Scholar 

  21. Ji D, Zhou H, Tong Y, Wang J, Zhu M, Chen T, Yuan A (2017) Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem Eng J 313:1623–1632

    Article  CAS  Google Scholar 

  22. Ba N, Zhu L, Zhang G, Li J, Li H (2016) Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties. Sensor Actuators B Chem 227:142–148

    Article  CAS  Google Scholar 

  23. Xi S, Zhu Y, Yang Y, Liu Y (2017) Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode. J Nanomater 2017:1–8

    Article  Google Scholar 

  24. Zhu Y, Xu Z, Yan K, Zhao H, Zhang J (2017) One-step synthesis of CuO-Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-Cysteine. ACS Appl Mater Interfaces 9(46):40452–40460

    Article  CAS  Google Scholar 

  25. Singha S, Saha A, Goswami S, Dey SK, Payra S, Banerjee S, Kumar S, Saha R (2018) A metal organic framework to CuO nanospheres of uniform morphology for the synthesis of alpha-aminonitriles under solvent-free condition along with crystal structure of the framework. Cryst Growth Des 18(1):189–199

    Article  CAS  Google Scholar 

  26. Banerjee A, Singh U, Aravindan V, Srinivasan M, Ogale S (2013) Synthesis of CuO nanostructures from Cu-based metal organic framework (MOE-199) for application as anode for Li-ion batteries. Nano Energy 2(6):1158–1163

    Article  CAS  Google Scholar 

  27. Zhang S, Liu H, Liu P, Yang Z, Feng X, Huo F, Lu X (2015) A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1). Nanoscale 7(21):9411–9415

    Article  CAS  Google Scholar 

  28. Wang Y, Lu Y, Zhan W, Xie Z, Kuang Q, Zheng L (2015) Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties. J Mater Chem A 3(24):12796–12803

    Article  CAS  Google Scholar 

  29. Hu X, Li C, Lou X, Yang Q, Hu B (2017) Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J Mater Chem A 5(25):12828–12837

    Article  CAS  Google Scholar 

  30. Zhang YF, Qiu LG, Yuan YP, Zhu YJ, Jiang X, Xiao JD (2014) Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl Catal B Environ 144:863–869

    Article  CAS  Google Scholar 

  31. Cao Y, Ma Y, Wang T, Wang X, Huo Q, Liu Y (2016) Facile fabricating hierarchically porous metal-organic frameworks via a template-free strategy. Cryst Growth Des 16(1):504–510

    Article  CAS  Google Scholar 

  32. Cao Y, Wang L, Shen C, Wang C, Hu X, Wang G (2019) An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensors Actuators B Chem 283:487–494

    Article  CAS  Google Scholar 

  33. Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y (2013) MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem 1(37):11126–11129

    Article  CAS  Google Scholar 

  34. Huo D, Li Q, Zhang Y, Hou C, Lei Y (2014) A highly efficient organophosphorus pesticides sensor based on CuO nanowires-SWCNTs hybrid nanocomposite. Sensors Actuators B Chem 199:410–417

    Article  CAS  Google Scholar 

  35. Soomro RA, Hallam KR, Ibupoto ZH, Tahira A, Sherazi STH, Sirajjuddin MSS, Willander M (2016) Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide. Electrochim Acta 190:972–979

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21375116), a project funded by the priority academic program development of Jiangsu higher education institutions (PAPD), top-notch academic programs project of Jiangsu higher education institutions (TAPP), Jiangsu province research program on analytical methods and techniques on the shared platform of large-scale instruments and equipment (BZ 201409), Yangzhou university science and technology innovation cultivation fund (2017CXJ010), and open project of state key laboratory of inorganic synthesis and preparative chemistry, (Jilin University, China, No. 2019-26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengyin Wang or Dawei Su.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Wang, L., Wang, C. et al. Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Microchim Acta 186, 481 (2019). https://doi.org/10.1007/s00604-019-3597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3597-0

Keywords

Navigation