Skip to main content
Log in

Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The aim of this study was to develop an electrochemical immunoassay system to detect of human chorionic gonadotropin (hCG). The immunosensor was constructed by covalent immobilization of silver nanoparticles (AgNPs) onto a nanocomposite containing graphene, chitosan (Chit) and 1-methyl-3-octylimidazolium tetrafluoroborate as ionic liquid (IL). Silver nanoparticles were used as a linker to immobilize hCG antibody onto the modified electrode. The amino groups of the antibody were covalently attached to an AgNP/g-IL-Chit nanocomposite. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to characterize the assembly process of the immunosensor. Riboflavin was used as the redox probe. Differential pulse voltammetry demonstrated that the formation of antibody–antigen complexes decreases the peak current of redox pair at the AgNP/Gr-IL-Chit/GCE (at a working potential of −0.38 V). The signal changes of riboflavin are used to detect hCG with broad response ranges from 0.0212 to 530 mIU.mL−1 and a low detection limit of 0.0066 ± 0.02 mIU.mL−1.

The nanocomposite was prepared by mixing ionic liquid (IL), chitosan (Chit) and graphene (Gr). Some of nanocomposite was placed on the electrode surface and then silver nanoparticle was pipetted onto the surface of it. Anti-hCG was dropped onto the surface of the modified electrode and finally the electrode was incubated in bovine serum albumin (BSA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fang T, Feng Y, Huangxian J (2007) Sensitive reagentless electrochemical immunosensor based on an ormosil sol–gel membrane for human chorionic gonadotrophin. Biosens Bioelectron 22:2945–2951

    Article  Google Scholar 

  2. Lund H, Torsetnes SB, Paus E, Nustad K, Reubsaet L, Halvorsen TG (2009) Exploring the Complementary Selectivity of Immunocapture and MS Detection for the Differentiation between hCG Isoforms in Clinically Relevant Samples. J Protein Res 8:5241–5252

    Article  CAS  Google Scholar 

  3. Putzbach W, Ronkainen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors. Sensors 13:4811–4840

    Article  CAS  Google Scholar 

  4. Tang DP, Yuan R, Chai YQ, Zhong X, Liu Y, Dai JY (2004) Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes. Biochem Eng J 22:43–49

    Article  CAS  Google Scholar 

  5. Yagiuda K, Hemmi A, Ito S, Asano Y (1996) Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens Bioelectron 11:703

    Article  CAS  Google Scholar 

  6. Ramanaviciene A, Ramanavicius A (2004) Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens Bioelectron 20:1076–1082

    Article  CAS  Google Scholar 

  7. Tang DP, Yuan R, Chai YQ, Dai JY, Zhong X, Liu Y (2004) A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy. Bioelectrochemistry 65:15–22

    Article  CAS  Google Scholar 

  8. Ding YJ, Liu J, Wang H, Shen GL, Yu RQ (2007) A piezoelectric immunosensor for the detection of α-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial. Biomaterials 28:2147–2154

    Article  CAS  Google Scholar 

  9. Li R, Wu D, Li H, Xu C, Wang H, Zhao Y, Cai Y, Wei Q, Du B (2011) Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Anal Biochem 414:196–201

    Article  CAS  Google Scholar 

  10. Wei Q, Li R, Du B, Wu D, Han Y, Cai Y, Zhao Y, Xin X, Li H, Yang M (2011) Multifunctional mesoporous silica nanoparticles as sensitive labels for immunoassay of human chorionic gonadotropin. Sensors Actuators B 153:256–260

    Article  CAS  Google Scholar 

  11. Mao L, Yuan R, Chai Y, Zhuo Y, Yang X (2010) A new electrochemiluminescence immunosensor based on Ru(bpy)3 2+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin. Sensors Actuators B 149:226–232

    Article  CAS  Google Scholar 

  12. Wu D, Zhang Y, Shi L, Cai Y, Ma H, Du B, Wei Q (2013) Electrochemical Immunosensor for Ultrasensitive Detection of Human Chorionic Gonadotropin Based on Pd@SBA-15. Electroanalysis 25:427–432

    Article  CAS  Google Scholar 

  13. Teixeira S, Conlan RS, Guy OJ, Goreti M, Sales F (2014) Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. J Mater Chem B 2:1852–1865

    Article  CAS  Google Scholar 

  14. Li Y, Tang L, Li J (2009) Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun 11:846–849

    Article  Google Scholar 

  15. Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085–1088

    Article  CAS  Google Scholar 

  16. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  17. Sun JY, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 82:125–130

    Article  CAS  Google Scholar 

  18. Huang KJ, Niu DJ, Xie WZ, Wang W (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102–108

    Article  CAS  Google Scholar 

  19. Ganesan V, John SA, Ramaraj R (2001) Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion film. J Electroanal Chem 502:167–173

    Article  CAS  Google Scholar 

  20. Simon BP, Fabregas E (2004) Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens Bioelectron 19:1131–1142

    Article  Google Scholar 

  21. Razumiene J, Meskys R, Gurevieiene V, Laurinavieius V, Reshetova MD, Ryabov AD (2000) 4-Ferrocenylphenol as an electron transfer mediator in PQQ-dependent alcohol and glucose dehydrogenase-catalyzed reactions. Electrochem Commun 2:307–311

    Article  CAS  Google Scholar 

  22. Hartley AM, Wilson GS (1966) Unusual adsorption effects in the electrochemical reduction of flavin mononucleotide at mercury electrodes. Anal Chem 38:681–687

    Article  CAS  Google Scholar 

  23. Roushani M, Karami E, Salimi A, Sahraei R (2013) Amperometric detection of hydrogen peroxide at nano-ruthenium oxide/riboflavin nanocomposite-modified glassy carbon electrodes. Electrochim Acta 113:134–140

    Article  CAS  Google Scholar 

  24. Roushani M, Abdi Z (2014) Novel electrochemical sensor based on graphene quantumdots/riboflavin nanocomposite for the detection of persulfate. Sensors Actuators B 201:503–510

    Article  CAS  Google Scholar 

  25. Wang GL, Dong YM, Zhu XY, Zhang WJ, Wang C, Jiao HJ (2011) Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes. Analyst 136:5256–5260

    Article  CAS  Google Scholar 

  26. Macdonal JR (1987) Impedance Spectroscopy. Wiley, New York

    Google Scholar 

  27. Liu N, Chen X, Ma Z (2013) Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 48:33–38

    Article  CAS  Google Scholar 

  28. Salimi A, Kavosi B, Fathi F, Hallaj R (2013) A highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Biosens Bioelectron 42:439–446

    Article  CAS  Google Scholar 

  29. Chai R, Yuan R, Chai YQ, Ou CF, Cao SR, Li XL (2008) Amperometric immunosensors based on layer-by-layer assemblyof gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta 74:1330–1336

    Article  CAS  Google Scholar 

  30. Yang GM, Chang YB, Yang H, Tan L, Wu ZS, Lu XX, Yang YH (2009) The preparation of reagentless electrochemical immunosensor based on a nano-gold and chitosan hybrid film for human chorionic gonadotrophin. Anal Chim Acta 644:72–77

    Article  CAS  Google Scholar 

  31. Tao M, Li XF, Wu ZS, Wang M, Mei H, Yang YH (2011) The preparation of label-free electrochemical immunosensor based on the Pt–Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin Chim Acta 412:550–555

    Article  CAS  Google Scholar 

  32. Yang GM, Yang XY, Yang CY, Yang YH (2011) A reagentless amperometric immunosensor for human chorionic gonadotrophin based on a gold nanotube arrays electrode. Colloids Surf A Physicochem Eng Asp 389:195–200

    Article  CAS  Google Scholar 

  33. Yang L, Zhao H, Fan S, Deng S, Lv Q, Lin J, Li CP (2014) Label-free electrochemical immunosensor based on gold–siliconcarbide nanocomposites for sensitive detection of humanchorionic gonadotrophin. Biosens Bioelectron 57:199–206

    Article  CAS  Google Scholar 

  34. Wang J, Yuan R, Chai Y, Cao S, Guan Sh FP, Min L (2010) A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin. Biochem Eng J 51:95–101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of Ilam University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushani, M., Valipour, A. Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe. Microchim Acta 183, 845–853 (2016). https://doi.org/10.1007/s00604-015-1731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1731-1

Keywords

Navigation