Skip to main content
Log in

Magnetite nanoparticles coated with chitosan and polyethylenimine as anion exchanger for sorptive enrichment of phosphopeptides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An anion exchange solid-phase sorbent is described. Chitosan coated magnetite nanoparticles were modified with polyethylenimine which is positively charged at pH 3 and therefore can be used for the magnet-supported enrichment of phosphopeptides which are negatively charged at this pH value. A 2-step strategy was used to synthesize the sorbent. The materials were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry and magnetic moment analysis. The anion exchanger was applied to extract phosphopeptides from a β-casein digest. Characteristic analytical figures include (a) a loading buffer of pH 3, (b) and elution buffer of pH 11, (c) a loading time of 5 min, (d) good selectivity (the β-casein to BSA ratio is 1:1000), and (e) excellent sensitivity (1 fmol). The optimized method was applied to egg yolk digest, non-fat milk digest, and diluted human serum.

Schematic representation of synthesis of PEI@chitosan@Fe3O4 nanoparticles, and of the enrichment of phosphopeptides by magnetic solid phase extraction prior to the determination of the peptides by MALDI-MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cutler P (1996) Affinity chromatography. In: Doonan S (ed) Protein purification protocols. Humana Press, Totowa, pp 157–168. https://doi.org/10.1385/0-89603-336-8:157

    Chapter  Google Scholar 

  2. Dunham WH, Mullin M, Gingras AC (2012) Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics 12(10):1576–1590. https://doi.org/10.1002/pmic.201100523

    Article  CAS  PubMed  Google Scholar 

  3. Urh M, Simpson D, Zhao K (2009) Affinity chromatography: general methods. Methods Enzymol 463:417–438. https://doi.org/10.1016/s0076-6879(09)63026-3

    Article  CAS  PubMed  Google Scholar 

  4. Narayanan SR, Crane LJ (1990) Affinity chromatography supports: a look at performance requirements. Trends Biotechnol 8:12–16

    Article  CAS  PubMed  Google Scholar 

  5. Li D, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44(22):8097–8123

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka N, McCalley DV (2015) Core–shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal Chem 88(1):279–298

    Article  PubMed  Google Scholar 

  7. Li X-S, Zhu G-T, Luo Y-B, Yuan B-F, Feng Y-Q (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC, Trends Anal Chem 45:233–247

    Article  CAS  Google Scholar 

  8. Riley NM, Coon JJ (2015) Phosphoproteomics in the age of rapid and deep proteome profiling. Anal Chem 88(1):74–94

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zebisch A, Czernilofsky AP, Keri G, Smigelskaite J, Sill H, Troppmair J (2007) Signaling through RAS-RAF-MEK-ERK: from basics to bedside. Curr Med Chem 14(5):601–623

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Shinde S, Koch M-H, Eisenacher M, Galozzi S, Lerari T, Barkovits K, Subedi P, Krüger R, Kuhlmann K (2015) Low-bias phosphopeptide enrichment from scarce samples using plastic antibodies. Sci Rep 5:11438

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hussain D, Najam-ul-Haq M, Jabeen F, Ashiq MN, Athar M, Rainer M, Huck CW, Bonn GK (2013) Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids. Anal Chim Acta 775:75–84

    Article  CAS  PubMed  Google Scholar 

  12. Hussain D, Musharraf SG, Najam-ul-Haq M (2016) Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides. Anal Bioanal Chem 408(6):1633–1641

    Article  CAS  PubMed  Google Scholar 

  13. Engholm-Keller K, Larsen MR (2016) Improving the Phosphoproteome coverage for limited sample amounts using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide enrichment and fractionation. In von Stechow L (Ed) Phospho-Proteomics: Methods and protocols, 2nd Edn. Springer-Verlag, New York, pp 161–177

    Chapter  Google Scholar 

  14. Alpert AJ, Hudecz O, Mechtler K (2015) Anion-exchange chromatography of Phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion–hydrophilic interaction chromatography. Anal Chem 87(9):4704–4711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Najam-ul-Haq M, Saeed A, Jabeen F, Hussain D, Khan N, Shabir M, Raza N, Ashiq MN, Malana MA, Zafar ZI (2015) Development of new multifunctional terpolymer sorbent for proteomics applications. Biomed Chromatogr 29(7):981–989. https://doi.org/10.1002/bmc.3382

    Article  CAS  PubMed  Google Scholar 

  16. Xu L-N, Li L-P, Jin L, Bai Y, Liu H-W (2014) Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides. Chem Commun 50(75):10963–10966

    Article  CAS  Google Scholar 

  17. Hussain D, Najam-ul-Haq M, Majeed S, Musharraf SG, Lu Q, He X, Feng Y-Q (2019) Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides. Anal Bioanal Chem 411(15):3373–3382. https://doi.org/10.1007/s00216-019-01811-4

    Article  CAS  PubMed  Google Scholar 

  18. Saeed A, Maya F, Xiao DJ, Najam-ul-Haq M, Svec F, Britt DK (2014) Growth of a highly porous coordination polymer on a macroporous polymer monolith support for enhanced immobilized metal ion affinity chromatographic enrichment of phosphopeptides. Adv Funct Mater 24(37):5790–5797

    Article  CAS  Google Scholar 

  19. Saeed A, Hussain D, Saleem S, Mehdi S, Javeed R, Jabeen F, Najam-ul-Haq M (2019) Metal–organic framework-based affinity materials in proteomics. Anal Bioanal Chem 411(9):1745–1759. https://doi.org/10.1007/s00216-019-01610-x

    Article  CAS  PubMed  Google Scholar 

  20. Motoyama A, Xu T, Ruse CI, Wohlschlegel JA, Yates JR (2007) Anion and cation mixed bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79(10):3623–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adachi J, Hashiguchi K, Nagano M, Sato M, Sato A, Fukamizu K, Ishihama Y, Tomonaga T (2016) Improved proteome and phosphoproteome analysis on a cation exchanger by a combined acid and salt gradient. Anal Chem 88(16):7899–7903

    Article  CAS  PubMed  Google Scholar 

  22. Zarei M, Sprenger A, Rackiewicz M, Dengjel J (2016) Fast and easy phosphopeptide fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth phosphoproteome analysis. Nat Protoc 11(1):37

    Article  CAS  PubMed  Google Scholar 

  23. Zhu G-T, He X-M, Chen X, Hussain D, Ding J, Feng Y-Q (2016) Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J Chromatogr A 1437:137–144

    Article  CAS  PubMed  Google Scholar 

  24. Gopal J, Abdelhamid HN, Hua P-Y, Wu H-F (2013) Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B 1(19):2463–2475. https://doi.org/10.1039/C3TB20079E

    Article  CAS  PubMed  Google Scholar 

  25. Xiao C, Liu X, Mao S, Zhang L, Lu J (2017) Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of cu(II) ions. Appl Surf Sci 394:378–385. https://doi.org/10.1016/j.apsusc.2016.10.116

    Article  CAS  Google Scholar 

  26. Zhu G-T, He X-M, He S, Chen X, Zhu S-K, Feng Y-Q (2016) Synthesis of Polyethylenimine functionalized mesoporous silica for in-pipet-tip Phosphopeptide enrichment. ACS Appl Mater Interfaces 8(47):32182–32188. https://doi.org/10.1021/acsami.6b10948

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Zhao X, Huang D, Pan X, Qi Y, Yang Y, Zhao H, Cheng G (2017) Proteomic analysis and cross species comparison of casein fractions from the milk of dairy animals. Sci Rep 7:43020. https://doi.org/10.1038/srep43020

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang J, Sun X, She X, Li J, Li Y, Deng C, Duan G (2018) Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Microchim Acta 185(6):309. https://doi.org/10.1007/s00604-018-2837-z

    Article  CAS  Google Scholar 

  29. Zhao M, Deng C, Zhang X (2014) The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun 50(47):6228–6231. https://doi.org/10.1039/C4CC01038H

    Article  CAS  Google Scholar 

  30. Sun N, Wang J, Yao J, Chen H, Deng C (2019) Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Microchim Acta 186(3):159. https://doi.org/10.1007/s00604-019-3274-3

    Article  CAS  Google Scholar 

  31. Wang J, Wang Z, Sun N, Deng C (2019) Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono-and multi-phosphopeptides. Microchim Acta 186(4):236

    Article  Google Scholar 

  32. Zhang L, Gan Y, Sun H, Yu B, Jin X, Zhang R, Zhang W, Zhang L (2017) Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Microchim Acta 184(2):547–555

    Article  CAS  Google Scholar 

  33. Chen Y, Xiong Z, Peng L, Gan Y, Zhao Y, Shen J, Qian J, Zhang L, Zhang W (2015) Facile preparation of Core–Shell magnetic metal–organic framework nanoparticles for the selective capture of Phosphopeptides. ACS Appl Mater Interfaces 7(30):16338–16347. https://doi.org/10.1021/acsami.5b03335

    Article  CAS  PubMed  Google Scholar 

  34. Tan S, Wang J, Han Q, Liang Q, Ding M (2018) A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Microchim Acta 185(7):316. https://doi.org/10.1007/s00604-018-2846-y

    Article  CAS  Google Scholar 

  35. Yang X, Xia Y (2016) Urea-modified metal-organic framework of type MIL-101 (Cr) for the preconcentration of phosphorylated peptides. Microchim Acta 183(7):2235–2240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Higher Education Commission (HEC) of Pakistan for financial support. Furthermore, authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Najam-ul-Haq.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, D., Musharraf, S.G., Fatima, B. et al. Magnetite nanoparticles coated with chitosan and polyethylenimine as anion exchanger for sorptive enrichment of phosphopeptides. Microchim Acta 186, 852 (2019). https://doi.org/10.1007/s00604-019-3971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3971-y

Keywords

Navigation