Skip to main content
Log in

Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Titania-grafted magnetic sporopollenin is synthesized by the liquid-phase deposition (LPD) technique, characterized by SEM, EDX, and nitrogen adsorption porosimetry, and used for the selective enrichment of phosphorylated peptides. The material is low cost because of easier availability of pollens and has rich surface chemistry which enables strong attachment of titania onto magnetic sporopollenin. The material shows higher selectivity of 1:1000 with β-casein spiked in BSA. Higher sensitivity of 10 fmol is recorded for phosphopeptides from standard β-casein digest. Twenty phosphorylated peptides are enriched from milk digest and four endogenous phosphopeptides from diluted human serum. The magnetic property of titania-coated magnetic sporopollenin facilitates the fast and effective isolation of phosphopeptides from complex mixtures through external magnet. The material is finally applied to tryptic digest of rat brain cell lysate for phosphopeptide enrichment where 2718 phosphopeptides are identified by using LC-MS/MS with C18 column. Titania-coated magnetic sporopollenin captures both mono-phosphorylated (2489) and multi-phosphorylated peptides (229) due to strong affinity of TiO2 with phosphates. TiO2-coated magnetic material also shows better enrichment efficiency in comparison to commercial TiO2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen P. The origins of protein phosphorylation. Nat Cell Biol. 2002;4(5):E127–30.

    Article  CAS  PubMed  Google Scholar 

  2. Hunter T. Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell. 1995;80(2):225–36.

    Article  CAS  PubMed  Google Scholar 

  3. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139(3):468–84.

    Article  CAS  PubMed  Google Scholar 

  4. Jabeen F, Hussain D, Fatima B, Musharraf SG, Huck CW, Bonn GK, et al. Silica–lanthanum oxide: pioneer composite of rare-earth metal oxide in selective phosphopeptides enrichment. Anal Chem. 2012;84(23):10180–5.

    Article  CAS  PubMed  Google Scholar 

  5. Mann M, Ong S-E, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002;20(6):261–8.

    Article  CAS  PubMed  Google Scholar 

  6. Morandell S, Stasyk T, Skvortsov S, Ascher S, Huber LA. Quantitative proteomics and phosphoproteomics reveal novel insights into complexity and dynamics of the EGFR signaling network. Proteomics. 2008;8(21):4383–401.

    Article  CAS  PubMed  Google Scholar 

  7. Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, et al. Suppression of eIF2[alpha] kinases alleviates Alzheimer’s disease-related plasticity and memory deficits. Nat Neurosci. 2013;16(9):1299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruprecht B, Lemeer S. Proteomic analysis of phosphorylation in cancer. Exp Rev Proteom. 2014;11(3):259–67.

    Article  CAS  Google Scholar 

  9. Marx H, Lemeer S, Schliep JE, Matheron L, Mohammed S, Cox J, et al. A large synthetic peptide and phosphopeptide reference library for mass spectrometry-based proteomics. Nat Biotech. 2013;31(6):557–64.

    Article  CAS  Google Scholar 

  10. Maes E, Tirez K, Baggerman G, Valkenborg D, Schoofs L, Encinar JR, et al. The use of elemental mass spectrometry in phosphoproteomic applications. Mass Spectrom Rev. 2016;35(3):350–60.

    Article  CAS  PubMed  Google Scholar 

  11. Batalha IL, Lowe CR, Roque ACA. Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trend Biotechnol. 2012;30(2):100–10.

    Article  CAS  Google Scholar 

  12. Sharma K, D’Souza Rochelle CJ, Tyanova S, Schaab C, Wiśniewski Jacek R, Cox J, et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014;8(5):1583–94.

    Article  CAS  PubMed  Google Scholar 

  13. Giansanti P, Stokes MP, Silva JC, Scholten A, Heck AJR. Interrogating cAMP-dependent kinase signaling in Jurkat T cells via a protein kinase a targeted immune-precipitation phosphoproteomics approach. Mol Cell Proteomics. 2013;12(11):3350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hussain D, Najam-ul-Haq M, Jabeen F, Ashiq MN, Athar M, Rainer M, et al. Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids. Anal Chim Acta. 2013;775:75–84.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJR, et al. Robust phosphoproteome enrichment using monodisperse microsphere–based immobilized titanium (IV) ion affinity chromatography. Nat Protocols. 2013;8(3):461–80.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu G-T, He X-M, Chen X, Hussain D, Ding J, Feng Y-Q. Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J Chromatogr A. 2016;1437:137–44.

    Article  CAS  PubMed  Google Scholar 

  17. Hennrich ML, van den Toorn HWP, Groenewold V, Heck AJR, Mohammed S. Ultra acidic strong cation exchange enabling the efficient enrichment of basic phosphopeptides. Anal Chem. 2012;84(4):1804–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hussain D, Musharraf SG, Najam-ul-Haq M. Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides. Anal Bioanal Chem. 2016;408(6):1633–41.

    Article  CAS  PubMed  Google Scholar 

  19. Wang M, Deng C, Li Y, Zhang X. Magnetic binary metal oxides affinity probe for highly selective enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2014;6(14):11775–82.

    Article  CAS  PubMed  Google Scholar 

  20. Najam-ul-Haq M, Jabeen F, Hussain D, Saeed A, Musharraf SG, Huck CW, et al. Versatile nanocomposites in phosphoproteomics: a review. Anal Chim Acta. 2012;747:7–18.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z-G, Lv N, Bi W-Z, Zhang J-L, Ni J-Z. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl Mater Interfaces. 2015;7(16):8377–92.

    Article  CAS  PubMed  Google Scholar 

  22. Li X-S, Yuan B-F, Feng Y-Q. Recent advances in phosphopeptide enrichment: strategies and techniques. TrAC Trend Anal Chem. 2016;78:70–83.

    Article  CAS  Google Scholar 

  23. Saeed A, Hussain D, Saleem S, Mehdi S, Javeed R, Jabeen F, et al. Metal–organic framework-based affinity materials in proteomics. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-01610-x.

  24. Wakabayashi M, Kyono Y, Sugiyama N, Ishihama Y. Extended coverage of singly and multiply phosphorylated peptides from a single titanium dioxide microcolumn. Anal Chem. 2015;87(20):10213–21.

    Article  CAS  PubMed  Google Scholar 

  25. Xu J, Zhang Z, He X-M, Wang R-Q, Hussain D, Feng Y-Q. Immobilization of zirconium-glycerolate nanowires on magnetic nanoparticles for extraction of urinary ribonucleosides. Microchim Acta. 2017;185(1):43.

    Article  CAS  Google Scholar 

  26. Li W, Deng Q, Fang G, Chen Y, Zhan J, Wang S. Facile synthesis of Fe3O4@TiO2-ZrO2 and its application in phosphopeptide enrichment. J Mater Chem B. 2013;1(14):1947–61.

    Article  CAS  Google Scholar 

  27. Ma W-F, Zhang Y, Li L-L, You L-J, Zhang P, Zhang Y-T, et al. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano. 2012;6(4):3179–88.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Zhang X, Deng C. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev. 2013;42(21):8517–39.

    Article  CAS  PubMed  Google Scholar 

  29. Schulte F, Lingott J, Panne U, Kneipp J. Chemical characterization and classification of pollen. Anal Chem. 2008;80(24):9551–6.

    Article  CAS  PubMed  Google Scholar 

  30. Diego-Taboada A, Beckett S, Atkin S, Mackenzie G. Hollow pollen shells to enhance drug delivery. Pharmaceutics. 2014;6(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barrier S, Diego-Taboada A, Thomasson MJ, Madden L, Pointon JC, Wadhawan JD, et al. Viability of plant spore exine capsules for microencapsulation. J Mater Chem. 2011;21(4):975–81.

    Article  CAS  Google Scholar 

  32. Bohne G, Richter E, Woehlecke H, Ehwald R. Diffusion barriers of tripartite sporopollenin microcapsules prepared from pine pollen. Ann Bot. 2003;92(2):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thio BJR, Clark KK, Keller AA. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media. J Hazard Mater. 2011;194:53–61.

    Article  CAS  PubMed  Google Scholar 

  34. Kamboh MA, Yilmaz M. Synthesis of N-methylglucamine functionalized calix[4]arene based magnetic sporopollenin for the removal of boron from aqueous environment. Desalination. 2013;310:67–74.

    Article  CAS  Google Scholar 

  35. Wang J, Li J, Wang Y, Gao M, Zhang X, Deng C. A novel double-component MOAC honeycomb composite with pollen grains as a template for phosphoproteomics research. Talanta. 2016;154:141–9.

    Article  CAS  PubMed  Google Scholar 

  36. Atkin SL, Barrier S, Cui Z, Fletcher PDI, Mackenzie G, Panel V, et al. UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed). J Photochem Photobiol B Biol. 2011;102(3):209–17.

    Article  CAS  Google Scholar 

  37. Wu J-H, Li X-S, Zhao Y, Zhang W, Guo L, Feng Y-Q. Application of liquid phase deposited titania nanoparticles on silica spheres to phosphopeptide enrichment and high performance liquid chromatography packings. J Chromatogr A. 2011;1218(20):2944–53.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu G-T, He X-M, He S, Chen X, Zhu S-K, Feng Y-Q. Synthesis of polyethylenimine functionalized mesoporous silica for in-pipet-tip phosphopeptide enrichment. ACS Appl Mater Interfaces. 2016;8(47):32182–8.

    Article  CAS  PubMed  Google Scholar 

  39. Najam-ul-Haq M, Jabeen F, Fatima B, Ashiq MN, Hussain D. Alumina nanocomposites: a comparative approach highlighting the improved characteristics of nanocomposites for phosphopeptides enrichment. Amino Acids. 2016;48(11):2571–9.

    Article  CAS  PubMed  Google Scholar 

  40. He X-M, Chen X, Zhu G-T, Wang Q, Yuan B-F, Feng Y-Q. Hydrophilic carboxyl cotton chelator for titanium(IV) immobilization and its application as novel fibrous sorbent for rapid enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2015;7(31):17356–62.

    Article  CAS  PubMed  Google Scholar 

  41. Paunov VN, Mackenzie G, Stoyanov SD. Sporopollenin micro-reactors for in-situ preparation, encapsulation and targeted delivery of active components. J Mater Chem. 2015;17(7):609–12.

    Article  CAS  Google Scholar 

  42. Sun N, Deng C, Li Y, Zhang X. Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces. 2014;6(14):11799–804.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng YY, Chen H-J, Shiau KJ, Hung S-U, Wang Y-S, Wu C-C. Efficient enrichment of phosphopeptides by magnetic TiO2-coated carbon-encapsulated iron nanoparticles. Proteomics. 2012;12(3):380–90.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao L, Qin H, Hu Z, Zhang Y, Wu RA, Zou H. A poly(ethylene glycol)-brush decorated magnetic polymer for highly specific enrichment of phosphopeptides. Chem Sci. 2012;3(9):2828–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Higher Education Commission (HEC) of Pakistan. The authors also thank the Key State Laboratory of Analytical Chemistry, Department of Chemistry, Wuhan University, Wuhan (430072), China, for their kind support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Najam-ul-Haq.

Ethics declarations

Samples were collected from healthy volunteers and animal houses after taking their written consent and approval by the ethical committee of Zhongnan Hospital of Wuhan University and Hubei Provincial Centre for Disease Control and Prevention (Wuhan, China) and met the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2.48 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, D., Najam-ul-Haq, M., Majeed, S. et al. Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides. Anal Bioanal Chem 411, 3373–3382 (2019). https://doi.org/10.1007/s00216-019-01811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01811-4

Keywords

Navigation