Skip to main content
Log in

Nonlinear polymer brush modified magnetic nanoparticles in phosphopeptides enrichment

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles attached to hydrophilic polymer brushes containing immobilized Fe3+ ions were synthesized and used as a new strategy for phosphopeptide enrichment from digested tryptic proteins. To test the performance of nanoparticles in phosphopeptide enrichment, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used. Magnetic nanoparticles with the following features such as high adsorption capacity (about 360 mg/g), easy control and transfer by external magnetic field (high magnetic saturation, about 50 emu/g), excellent phosphopeptide recovery (93.4%) and no shadow effect (due to their non-porous structure), were synthesized. It has been shown that the presence of other proteins in high concentrations does not affect on the performance of nanoparticles. Furthermore, the lowest concentration of digested β-casein phosphopeptides detectable by nanoparticles was determined to be approximately 0.5 fmol µL− 1. The function of synthesized nanoparticles to enrich phosphopeptides in complex biological samples was also demonstrated by isolating four endogenous phosphopeptides from human serum.

Graphical Abstract

A dispersion containing Fe-MNPs is added to a phosphopeptide solution. Then, using a magnet, particles containing phosphopeptides are separated from the solution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Cantrell D (1996) T cell antigen receptor signal transduction pathways. Annu Rev Immunol 14:259. https://doi.org/10.1146/annurev.immunol.14.1.259

    Article  CAS  PubMed  Google Scholar 

  2. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25. https://doi.org/10.1038/nmeth731

    Article  CAS  PubMed  Google Scholar 

  3. Fraser KB, Moehle MS, Alcalay RN, West AB, Consortium LC (2016) Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 86:994–999. https://doi.org/10.1212/WNL.0000000000002436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong M, Wu M, Wang F, Qin H, Han G, Dong J, Wu RA, Ye M, Liu Z, Zou H (2010) Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Anal Chem 82:2907–2915. https://doi.org/10.1021/ac902907w

    Article  CAS  PubMed  Google Scholar 

  5. Ashman K, Villar EL (2009) Phosphoproteomics and cancer research. Clin Transl Oncol 11:356–362. https://doi.org/10.1007/s12094-009-0369-z

    Article  CAS  PubMed  Google Scholar 

  6. Wang Z, Cheng G, Liu Y, Zhang J, Sun D, Ni J (2013) Novel 3D flowerlike hierarchical gamma-Fe2O3@xNH4F.yLuF3 core-shell microspheres tailor-made by a phase transformation process for the capture of phosphopeptides. J Mater Chem B 1:4845–4854. https://doi.org/10.1039/c3tb20743a

    Article  CAS  PubMed  Google Scholar 

  7. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  8. Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJ, Zou H, Mohammed S (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 8:461–480. https://doi.org/10.1038/nprot.2013.010

    Article  CAS  PubMed  Google Scholar 

  9. Yao Y, Dong J, Dong M, Liu F, Wang Y, Mao J, Ye M, Zou H (2017) An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis. J Chromatogr A 1498:22–28. https://doi.org/10.1016/j.chroma.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Shinde S, Koch MH, Eisenacher M, Galozzi S, Lerari T, Barkovits K, Subedi P, Kruger R, Kuhlmann K, Sellergren B, Helling S, Marcus K (2015) Lowbias phosphopeptide enrichment from scarce samples using plastic antibodies. Sci Rep 5:11438. https://doi.org/10.1038/srep11438

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhou J (2018) Phosphopeptide enrichment with cross-linked os(II)(dmebpy)2Clderivatized acrylamide and vinylimidazole copolymer. Rapid Commun Mass Spectrom 32:1–8. https://doi.org/10.1002/rcm.7985

    Article  CAS  PubMed  Google Scholar 

  12. Tang R, Yu Y, Dong J, Yao Y, Ma S, Ou J, Ye M (2021) Facile preparation of bifunctional adsorbents for efficiently enriching N-glycopeptides and phosphopeptides. Anal Chim Acta 1144:111–120. https://doi.org/10.1016/j.aca.2020.12.015

    Article  CAS  PubMed  Google Scholar 

  13. Najam-ul-Haq M, Saeed A, Jabeen F, Maya F, Ashiq MN, Sharif A (2014) Newly developed poly(allyl glycidyl ether/divinyl benzene) polymer for phosphopeptides enrichment and desalting of biofluids. ACS Appl Mater Interfaces 6:3536–3545. https://doi.org/10.1021/am405718j

    Article  CAS  PubMed  Google Scholar 

  14. Saeed A, Najam-ul-Haq M, Jabeen F, Svec F (2013) High affinity phosphopeptides enrichment and desalting of biological materials on newly engineered poly(glycidyl propargyl ether/divinyl benzene). Anal Chem 85:8979–8986. https://doi.org/10.1021/ac4015484

    Article  CAS  PubMed  Google Scholar 

  15. Lu Q, Chen C, Xiong Y, Li G, Zhang X, Zhang Y, Wang D, Zhu Z, Li X, Qing G, Sun T, Liang X (2020) High-efficiency phosphopeptide and glycopeptide simultaneous enrichment by hydrogen bond-based bifunctional smart polymer. Anal Chem 92:6269–6277. https://doi.org/10.1021/acs.analchem.9b02643

    Article  CAS  PubMed  Google Scholar 

  16. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008) Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res 7:3957–3967. https://doi.org/10.1021/pr800223m

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H, Xu S, Ye M, Feng S, Pan C, Jiang X, Li X, Han G, Fu Y, Zou H (2006) Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. J Proteome Res 5:2431–2437. https://doi.org/10.1021/pr060162f

    Article  CAS  PubMed  Google Scholar 

  18. Ma S, Tang R, Yu Y, Zhang L, Zhang H, Ding W, Ou J (2021) Robust titanium phenolate-modified microspheres as reusable affinity materials for selectively capturing phosphopeptides from complicated biosamples. ACS Sustain Chem Eng 9:17025–17033. https://doi.org/10.1021/acssuschemeng.1c05864

    Article  CAS  Google Scholar 

  19. Wang Z, Cheng G, Liu Y, Zhang J, Sun D, Ni J (2012) Fabrication of novel hierarchical structured Fe3O4@LnPO4 (Ln¼Eu, Tb, Er) multifunctional microspheres for capturing and labeling phosphopeptides. Small 8:3456–3464. https://doi.org/10.1002/smll.201200601

    Article  CAS  PubMed  Google Scholar 

  20. Tang R, Zhou J, Li X, Yu Y, Ma S, Ou J (2022) Facile one-pot preparation of phosphonate functional polythiophene based microsphere via Friedel-Crafts reaction for selective enrichment of phosphopeptides from milk. Anal Chim Acta 1190:339268. https://doi.org/10.1016/j.aca.2021.339268

    Article  CAS  PubMed  Google Scholar 

  21. Yan Y, Zheng Z, Deng C, Li Y, Zhang X, Yang P (2013) Hydrophilic polydopaminecoated graphene for metal ion immobilization as a novel immobilized metal ion affinity chromatography platform for phosphoproteome analysis. Anal Chem 85:8483–8487. https://doi.org/10.1021/ac401668e

    Article  CAS  PubMed  Google Scholar 

  22. Shi C, Deng C (2015) Immobilized metal ion affinity chromatography ZipTip pipette tip with polydopamine modification and Ti4 immobilization for selective enrichment and isolation of phosphopeptides. Talanta 143:464–468. https://doi.org/10.1016/j.talanta.2015.05.039

    Article  CAS  PubMed  Google Scholar 

  23. Shi C, Deng C, Zou S, Zhang X (2014) Polydopamine-coated eppendorf tubes for Ti4 immobilization for selective enrichment of phosphopeptides. Talanta 127:88–93. https://doi.org/10.1016/j.talanta.2014.03.054

    Article  CAS  PubMed  Google Scholar 

  24. Shi C, Lin Q, Deng C (2015) Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis. Talanta 135:81–86. https://doi.org/10.1016/j.talanta.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Tian Z (2018) Facile synthesis of titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles for highly specific enrichment and analysis of intact phosphoproteins. J Chromatogr A 1564:69–75. https://doi.org/10.1016/j.chroma.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  26. Sun N, Deng C, Li Y, Zhang X (2014) Size-Exclusive Magnetic Graphene/Mesoporous Silica Composites with Titanium(IV)-Immobilized pore walls for Selective Enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces 6:11799–11804. https://doi.org/10.1021/am502529a

    Article  CAS  PubMed  Google Scholar 

  27. Hong Y, Yao Y, Zhao H, Sheng Q, Ye M, Yu C, Lan M (2018) Dendritic mesoporous silica nanoparticles with abundant Ti4 for phosphopeptide enrichment from cancer cells with 96% specificity. Anal Chem 90:7617–7625. https://doi.org/10.1021/acs.analchem.8b01369

    Article  CAS  PubMed  Google Scholar 

  28. Hussain D, Najam-ul-Haq M, Jabeen F, Ashiq MN, Athar M, Rainer M, Huck CW, Bonn GK (2013) Functionalized diamond nanopowder for phosphopeptides enrichment from complex biological fluids. Anal Chim Acta 775:75–84. https://doi.org/10.1016/j.aca.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  29. Zhao L, Qin H, Hu Z, Zhang Y, Wu RA, Zou H (2012) A poly(ethylene glycol)- brush decorated magnetic polymer for highly specific enrichment of phosphopeptides. Chem Sci 3:2828–2838. https://doi.org/10.1039/c2sc20363d

    Article  CAS  Google Scholar 

  30. Wang Q, He X, Chen X, Zhu G, Wang R, Feng Y (2017) Pyridoxal 5 ‘-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. J Chromatogr A 1499:30–37. https://doi.org/10.1016/j.chroma.2017.03.085

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Jiao F, Gao F, Lv Y, Wu Q, Zhao Y, Shen Y, Zhang Y, Qian X (2017) Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta 166:133–140. https://doi.org/10.1016/j.talanta.2017.01.043

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Xia C, Fan Z, Jiao F, Gao F, Xie Y, He Z, Zhang W, Zhang Y, Shen Y, Qian X, Qin W (2020) Novel two-dimensional MoS2-Ti4 nanomaterial for efficient enrichment of phosphopeptides and large-scale identification of histidine phosphorylation by mass spectrometry. Anal Chem 92:12801–12808. https://doi.org/10.1021/acs.analchem.0c00618

    Article  CAS  PubMed  Google Scholar 

  33. Li JY, Cao Z, Hua Y, Wei G, Yu XZ, Shang W, Lian H (2020) Solvothermal synthesis of novel magnetic nickel based iron oxide nanocomposites for selective capture of global- and mono-phosphopeptides. Anal Chem 92:1058–1067. https://doi.org/10.1021/acs.analchem.9b04053

    Article  CAS  PubMed  Google Scholar 

  34. Ding F, Zhao Y, Liu H, Zhang W (2020) Core-shell magnetic microporous covalent organic framework with functionalized Ti(Iv) for selective enrichment of phosphopeptides. Analyst 145:4341–4351. https://doi.org/10.1039/d0an00038h

    Article  CAS  PubMed  Google Scholar 

  35. Gao C, Bai J, He Y, Zheng Q, Ma W, Lei Z, Zhang M, Wu J, Fu F, Lin Z (2019) Postsynthetic functionalization of Zr4-immobilized core-shell structured magnetic covalent organic frameworks for selective enrichment of phosphopeptides. ACS Appl Mater Interfaces 11:13735–13741. https://doi.org/10.1021/acsami.9b03330

    Article  CAS  PubMed  Google Scholar 

  36. Chu H, Zheng H, Miao A, Deng C, Sun N (2023) Probing region-resolved heterogeneity of phosphoproteome in human lens by hybrid metal organic frameworks. Chin Chem Lett 34:107716. https://doi.org/10.1016/j.cclet.2022.07.059

    Article  CAS  Google Scholar 

  37. Chen L, Ou J, Wang H, Liu Z, Ye M, Zou H (2016) Tailor-made stable zr(IV)-based metal-organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides. ACS Appl Mater Interfaces 8:20292–20300. https://doi.org/10.1021/acsami.6b06225

    Article  CAS  PubMed  Google Scholar 

  38. He Y, Zheng Q, Lin Z (2021) Ti+ 4-immobilized hierarchically porous zirconiumorganic frameworks for highly efficient enrichment of phosphopeptides. Microchim Acta 188:150. https://doi.org/10.1007/s00604-021-04760-x

    Article  CAS  Google Scholar 

  39. Pu C, Zhao H, Gu Q, Zheng Y, Lan M (2020) Targeted immobilization of titanium (IV) on magnetic mesoporous nanomaterials derived from metal-organic frameworks for high-efficiency phosphopeptide enrichment in biological samples. Microchim Acta 187:568. https://doi.org/10.1007/s00604-020-04556-5

    Article  CAS  Google Scholar 

  40. Hart SR, Waterfield MD, Burlingame AL, Cramer R (2002) Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS. J Am Soc Mass Spectrom 13:1042. https://doi.org/10.1016/S1044-0305(02)00432-4

    Article  CAS  PubMed  Google Scholar 

  41. Hong Y, Zhan Q, Pu C, Sheng Q, Zhao H, Lan M (2018) Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles. Talanta 187:223–230. https://doi.org/10.1016/j.talanta.2018.05.031

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Yu X, Wang X, Shan W, Yang P, Tang Y (2004) Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem Commun 2882–2883. https://doi.org/10.1039/B411336E

  43. Rembsum A, Dreyer W (1980) Immunomicrospheres: reagents for cell labeling and separation. Science 208:364–368. https://doi.org/10.1126/science.6768131

    Article  Google Scholar 

  44. Li D, Tang J, Wei C, Guo J, Wang S, Chaudhary D, Wang C (2012) Doxorubicin-conjugated mesoporous magnetic colloidal nano crystal clusters stabilized by polysaccharide as a smart anticancer drug vehicle. Small 8:2690–2697. https://doi.org/10.1002/smll.201200272

    Article  CAS  PubMed  Google Scholar 

  45. Salimi K, Usta DD, Koçer I, Çelikad E, Tuncel A (2017) Highly selective magnetic affinity purification of histidine-tagged proteins by Ni2+ carrying monodisperse composite microspheres. RSC Adv 7:8718. https://doi.org/10.1039/C6RA27736E

    Article  CAS  Google Scholar 

  46. Horak D, Rittich B, Safar J, Spanova A, Lenfeld J, Benes MJ (2001) Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) Microspheres. Biotechnol Prog 17:447. https://doi.org/10.1021/bp0100171

    Article  CAS  PubMed  Google Scholar 

  47. Huang W, Kim J-B, Bruening ML, Baker GL (2002) Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules 35:1175–1179. https://doi.org/10.1021/ma011159e

    Article  CAS  Google Scholar 

  48. Ulbricht M, Yang H (2005) Porous polypropylene membranes with different carboxyl polymer brush layers for reversible protein binding via surface-initiated graft copolymerization. Chem Mater 17:2622–2631. https://doi.org/10.1021/cm0485714

    Article  CAS  Google Scholar 

  49. Brown HR, Char K, Deline VR (1990) Enthalpy-driven swelling of a polymer brush. Macromolecules 23:3383–3385. https://doi.org/10.1021/ma00215a029

    Article  CAS  Google Scholar 

  50. Andruzzi L, Senaratne W, Hexemer A, Sheets ED, Ilic B et al (2005) Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. Langmuir 21:2495–2504. https://doi.org/10.1021/la047574s

    Article  CAS  PubMed  Google Scholar 

  51. Ma HW, Hyun JH, Stiller P, Chilkoti A (2004) Non-fouling oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater 16:338–341. https://doi.org/10.1002/adma.200305830

    Article  CAS  Google Scholar 

  52. Zhang Z, Chen SF, Jiang SY (2006) Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7:3311–3315. https://doi.org/10.1021/bm060750m

    Article  CAS  PubMed  Google Scholar 

  53. Shirzadi Z, Baharvand H, Nikpour Nezhati M, Sajedi RH (2020) Synthesis of nonlinear polymer brushes on magnetic nanoparticles as an affinity adsorbent for his-tagged xylanase purification. Colloid Polym Sci 298:1597–1607. https://doi.org/10.1007/s00396-020-04749-7

    Article  CAS  Google Scholar 

  54. Asara JM, Allison J (1999) Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts. J Am Soc Mass Spectrom 10:35–44. https://doi.org/10.1016/S1044-0305(98)00129-9

    Article  CAS  PubMed  Google Scholar 

  55. Chang CK, Wu CC, Wang YS, Chang HC (2008) Selective extraction and Enrichment of Multiphosphorylated peptides using polyarginine-coated Diamond nanoparticles. Anal Chem 80:3791–3797. https://doi.org/10.1021/ac702618h

    Article  CAS  PubMed  Google Scholar 

  56. Hu Y, Guo S, Ma H, Ye N, Ren X (2013) Preparation and loading buffer study of polyvinyl alcohol-based immobilized Ti4+ affinity chromatography for phosphopeptide enrichment. J Sep Sci 36:3563–3570. https://doi.org/10.1002/jssc.201300622

    Article  CAS  PubMed  Google Scholar 

  57. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494. https://doi.org/10.1038/nprot.2009.21

    Article  CAS  PubMed  Google Scholar 

  58. Xiong Z, Zhang L, Fang C, Zhang Q, Ji Y, Zhang Z, Zhang W, Zou H (2014) Ti4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides. J Mater Chem B 2:4473. https://doi.org/10.1039/C4TB00479E

    Article  CAS  PubMed  Google Scholar 

  59. Chen Y, Xiong Z, Peng L, Gan Y, Zhao Y, Shen J, Qian J, Zhang L, Zhang W (2015) Facile preparation of core–shell magnetic metal–organic framework nanoparticles for the selective capture of phosphopeptides. ACS Appl Mater Inter 7:16338–16347. https://doi.org/10.1021/acsami.5b03335

    Article  CAS  Google Scholar 

  60. Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H (2009) Profiling of endogenous serum phosphorylated peptides by Titanium (IV) immobilized mesoporous silica particles Enrichment and MALDI-TOFMS detection. Anal Chem 81:94–104. https://doi.org/10.1021/ac801974f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Iran Polymer and Petrochemical Institute and the Department of Chemistry of Islamic Azad University, Central Tehran Branch for their support.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Z. Shirzadi, H. Baharvand, M. Nikpour Nezhati, H. Ahmad Panahi and R. H. Sajedi. The first draft of the manuscript was written by Zahra Shirzadi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Habibollah Baharvand.

Ethics declarations

Ethics approval and consent to participate

The authors declare They have their consent to participate and publish of this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirzadi, Z., Baharvand, H., Nezhati, M.N. et al. Nonlinear polymer brush modified magnetic nanoparticles in phosphopeptides enrichment. Colloid Polym Sci 302, 911–923 (2024). https://doi.org/10.1007/s00396-024-05244-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-024-05244-z

Keywords

Navigation