Skip to main content
Log in

Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles embedded in amine-functionalized silicate sol–gel network were synthesized and used for sensing biomolecules such as cysteine, adenosine, and β-nicotinamide adenine dinucleotide (NADH). The sensing of these biomolecules by the assembly of silver nanoparticles was triggered by the optical response of the surface plasmon resonance (SPR) of the silver nanoparticles. The optical sensor exhibited the lowest detection limit (LOD) of 5, 20, and 5 μM for cysteine, adenosine, and NADH, respectively. The sensing of biomolecules in the micromolar range by using the amine-functionalized silicate sol–gel embedded silver nanoparticles was studied in the presence of interference molecules like uridine, glycine, guanine, and guanosine. Thus, the present approach might open up a new avenue for the development of silver nanoparticles-based optical sensor devices for biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bally M, Halter M, Voros J, Grandin HM (2006) Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Surf Inter Anal 38:1442–1458

    Article  CAS  Google Scholar 

  • Chen S-J, Huang Y-F, Huang C-C, Lee K-H, Lin Z-H, Chang H-T (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23:1749–1753

    Article  CAS  Google Scholar 

  • Dawn A, Nandi AK (2006) Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite. J Phys Chem B 110:18291–18298

    Article  CAS  Google Scholar 

  • Goodhew PJ, Humphreys J, Beanland R (2001) Electron microscopy and analysis (chapter 3), 3rd edn. Taylor and Francis, London, p 47

    Google Scholar 

  • Gorton L (2005) Biosensors and modern biospecific analytical techniques, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Guo J-Z, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111:12254–12259

    Article  CAS  Google Scholar 

  • Henglein A, Meisel D (1998) Spectrophotometric observations of the adsorption of organosulfur compounds on colloidal silver nanoparticles. J Phys Chem B 102:8364–8366

    Article  CAS  Google Scholar 

  • Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  • Jackson AM, Hu Y, Silva PJ, Stellacci F (2006) From homoligand- to mixed-ligand- monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc 128:11135–11149

    Article  CAS  Google Scholar 

  • Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78:6332–6339

    Article  CAS  Google Scholar 

  • Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  • Kelly LK, Coronado E, Lin Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Lee KS, El-Sayed MA (2006) Surface plasmon resonances, optical properties, and electrical conductivity thermal hysteresis of silver nanofibers produced by the electrospinning technique. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  • Lee J-S, Ulmann PA, Han MS, Mirkin CA (2008) A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533

    Article  CAS  Google Scholar 

  • Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y (2010a) LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir 26:9130–9135

    Article  CAS  Google Scholar 

  • Li X, Lenhart JJ, Walker HW (2010b) Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–16698

    Article  CAS  Google Scholar 

  • Lim SI, Zhong C-J (2009) Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. Acc Chem Res 42:798–808

    Article  CAS  Google Scholar 

  • Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, Pan Y, Zhou S (2007) Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 23:826–833

    Article  CAS  Google Scholar 

  • Lin S-Y, Wu S-H, Chen C-H (2006) A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed 45:4948–4951

    Article  CAS  Google Scholar 

  • Lin J-H, Chang C-W, Wu Z-H, Tseng W-L (2010) Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles. Anal Chem 82:8775–8779

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632

    Article  CAS  Google Scholar 

  • Lu Y, Liu J (2007) Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323

    Article  CAS  Google Scholar 

  • Lu C, Zu Y (2007) Specific detection of cysteine and homocysteine: recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun (37):3871–3873

  • Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81:7552–7560

    Article  CAS  Google Scholar 

  • Matthew ES, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  Google Scholar 

  • Muniz-Miranda M, Gellini C, Pagliai M, Innocenti M, Salvi PR, Schettino V (2010) SERS and computational studies on microRNA chains adsorbed on silver surfaces. J Phys Chem C 114:13730–13735

    CAS  Google Scholar 

  • Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378

    Article  CAS  Google Scholar 

  • Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:1894–1898

    Article  Google Scholar 

  • Pakiari AH, Jamshidi Z (2007) Interaction of amino acids with gold and silver clusters. J Phys Chem A 111:4391–4396

    Article  CAS  Google Scholar 

  • Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  • Shang L, Qin C, Wang T, Wang M, Wang L, Dong S (2007) Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J Phys Chem C 111:13414–13417

    Article  CAS  Google Scholar 

  • Shanmukh S, Jones L, Driskell J, Zhao Y-P, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  • Wang Z, Levy R, Fernig DG, Brust M (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J Am Chem Soc 128:2214–2215

    Article  CAS  Google Scholar 

  • Wei G, Zhou H, Liu Z, Song Y, Wang L, Sun L, Li Z (2005) One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. J Phys Chem B 109:8738–8743

    Article  CAS  Google Scholar 

  • Wei X, Qi L, Tan J, Liu R, Wang F (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671:80–84

    Article  CAS  Google Scholar 

  • Wu H-P, Huang C-C, Cheng T-L, Tseng W-L (2008) Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine. Talanta 76:347–352

    Article  CAS  Google Scholar 

  • Zayats M, Pogorelova SP, Kharitonov AB, Lioubashevski O, Katz E, Willner I (2003) Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem-A Europ J 9:6108–6114

    Article  CAS  Google Scholar 

  • Zhang J, Liu H, Zhan P, Wang Z, Ming N (2007) Assembly and photoinduced organization of mono- and oligopeptide molecules containing an azobenzene moiety. Adv Funct Mater 17:1558–1566

    Article  CAS  Google Scholar 

  • Zhang S, Xia J, Li X (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem 80:8382–8388

    Article  CAS  Google Scholar 

  • Zhang J-Q, Wang Y-S, He Y, Jiang T, Yang H-M, Tan X, Kang R-H, Yuan Y-K, Shi L-F (2010) Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem 397:212–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.R. acknowledges the financial support from the Department of Science and Technology (DST), New Delhi, and G.M. is a recipient of the CSIR-SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Ramaraj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maduraiveeran, G., Ramaraj, R. Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. J Nanopart Res 13, 4267–4276 (2011). https://doi.org/10.1007/s11051-011-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0372-5

Keywords

Navigation