Skip to main content

Advertisement

Log in

Surgical interpretation of the WHO subclassification of intrahepatic cholangiocarcinoma: a narrative review

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Intrahepatic cholangiocarcinoma (iCCA) has been subclassified by its gross morphology into the mass-forming (MF), periductal-infiltrating (PI), and intraductal growth (IG) types and their combinations. This classification correlates well with clinical features; for example, MF-iCCA has less lymph-node metastasis and a better prognosis than PI-iCCA. According to the recently accumulated evidence from histological investigations, the WHO classification endorsed a subclassification scheme in which iCCA cases are classified into small- and large-duct types. Small-duct iCCA is considered to originate from septal or smaller bile ducts and is characterized by less frequent lymph-node metastasis, a favorable prognosis, and an MF appearance. Large-duct iCCA arises around the second branch of the biliary tree and has more aggressive biology and distinct genetic abnormalities. According to the practice guidelines for iCCA from the Liver Cancer Study Group of Japan and the National Comprehensive Cancer Network, upfront surgery is recommended for iCCA without distant metastasis regardless of the morphological subtype, based on clinical experience. In consideration of the biological heterogeneity of iCCA, the treatment strategy for iCCA needs to be reconsidered based on the WHO subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morimoto Y, Tanaka Y, Ito T, Nakahara M, Nakaba H, Nishida T, et al. Long-term survival and prognostic factors in the surgical treatment for intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg. 2003;10:432–40.

    Article  PubMed  Google Scholar 

  2. Sano T, Kamiya J, Nagino M, Uesaka K, Kondo S, Kanai M, et al. Macroscopic classification and preoperative diagnosis of intrahepatic cholangiocarcinoma in Japan. J Hepatobiliary Pancreat Surg. 1999;6:101–7.

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto M, Ariizumi S. Surgical outcomes of intrahepatic cholangiocarcinoma. Surg Today. 2011;41:896–902.

    Article  PubMed  Google Scholar 

  4. Aishima S, Kuroda Y, Nishihara Y, Iguchi T, Taguchi K, Taketomi A, et al. Proposal of progression model for intrahepatic cholangiocarcinoma: clinicopathologic differences between hilar type and peripheral type. Am J Surg Pathol. 2007;31:1059–67.

    Article  PubMed  Google Scholar 

  5. Hayashi A, Misumi K, Shibahara J, Arita J, Sakamoto Y, Hasegawa K, et al. Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am J Surg Pathol. 2016;40:1021–30.

    Article  PubMed  Google Scholar 

  6. Liau JY, Tsai JH, Yuan RH, Chang CN, Lee HJ, Jeng YM. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol. 2014;27:1163–73.

    Article  CAS  PubMed  Google Scholar 

  7. Akita M, Fujikura K, Ajiki T, Fukumoto T, Otani K, Azuma T, et al. Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Mod Pathol. 2017;30:986–97.

    Article  CAS  PubMed  Google Scholar 

  8. Classification of Tumours Editorial Board. Digestive system tumours; international agency for research on cancer: Lyon, France, 2019.

  9. Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21:671–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crispo F, Pietrafesa M, Condelli V, Maddalena F, Bruno G, Piscazzi A, et al. IDH1 targeting as a new potential option for intrahepatic cholangiocarcinoma treatment-current state and future perspectives. Molecules. 2020;25:3754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. European Association for the Study of the Liver. EASL-ILCA clinical practice guidelines on the management of intrahepatic cholangiocarcinoma. J Hepatol. 2023;79:181–208.

    Article  Google Scholar 

  12. Rushbrook SM, Kendall TJ, Zen Y, Albazaz R, Manoharan P, Pereira SP, et al. British society of gastroenterology guidelines for the diagnosis and management of cholangiocarcinoma. Gut. 2023;28:gutjnl-2023-330029. https://doi.org/10.1136/gutjnl-2023-330029.

    Article  Google Scholar 

  13. Xiao Y, Zhou C, Ni X, Huang P, Wu F, Yang C, Zeng M. Preoperative subcategorization based on magnetic resonance imaging in intrahepatic cholangiocarcinoma. Cancer Imaging. 2023;23:15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park S, Lee Y, Kim H, Yu MH, Lee ES, Yoon JH, et al. Subtype classification of intrahepatic cholangiocarcinoma using liver MR imaging features and its prognostic value. Liver Cancer. 2022;11:233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamamoto M, Takasaki K, Yoshikawa T, Ueno K, Nakano M. Does gross appearance indicate prognosis in intrahepatic cholangiocarcinoma? J Surg Oncol. 1998;69:162–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bagante F, Spolverato G, Weiss M, Alexandrescu S, Marques H, Aldrighetti L, et al. Impact of morphological status on long-term outcome among patients undergoing liver surgery for intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017;24:2491–501.

    Article  PubMed  Google Scholar 

  17. Hwang S, Lee YJ, Song GW, Park KM, Kim KH, Ahn CS, et al. Prognostic impact of tumor growth type on 7th AJCC staging system for intrahepatic cholangiocarcinoma: a single-center experience of 659 cases. J Gastrointest Surg. 2015;19:1291–304.

    Article  PubMed  Google Scholar 

  18. Yeh CN, Yeh TS, Chen TC, Park KM, Kim KH, Ahn CS. Gross pathological classification of peripheral cholangiocarcinoma determines the efficacy of hepatectomy. J Gastroenterol. 2013;48:647–59.

    Article  CAS  PubMed  Google Scholar 

  19. Shimada K, Sano T, Sakamoto Y, Esaki M, Kosuge T, Ojima H. Surgical outcomes of the mass-forming plus periductal infiltrating types of intrahepatic cholangiocarcinoma: a comparative study with the typical mass-forming type of intrahepatic cholangiocarcinoma. World J Surg. 2007;31:2016–22.

    Article  PubMed  Google Scholar 

  20. Bagante F, Weiss M, Alexandrescu S, Marques HP, Aldrighetti L, Maithel SK, et al. Long-term outcomes of patients with intraductal growth sub-type of intrahepatic cholangiocarcinoma. HPB (Oxford). 2018;20:1189–97.

    Article  PubMed  Google Scholar 

  21. Imai K, Yamamoto M, Ariizumi S. Surgery for periductal infiltrating type intrahepatic cholangiocarcinoma without hilar invasion provides a better outcome than for mass-forming type intrahepatic cholangiocarcinoma without hilar invasion. Hepatogastroenterology. 2010;57:1333–6.

    PubMed  Google Scholar 

  22. Guglielmi A, Ruzzenente A, Campagnaro T, Pachera S, Valdegamberi A, Nicoli P, et al. Intrahepatic cholangiocarcinoma: prognostic factors after surgical resection. World J Surg. 2009;33:1247–54.

    Article  PubMed  Google Scholar 

  23. Meng ZW, Pan W, Hong HJ, Chen JZ, Chen YL. Macroscopic types of intrahepatic cholangiocarcinoma and the eighth edition of AJCC/UICC TNM staging system. Oncotarget. 2017;8:101165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ariizumi S, Kotera Y, Takahashi Y, Katagiri S, Chen I, Ota T, et al. Mass-forming intrahepatic cholangiocarcinoma with marked enhancement on arterial-phase computed tomography reflects favorable surgical outcomes. J Surg Oncol. 2011;104:130–9.

    Article  PubMed  Google Scholar 

  25. Fujita N, Asayama Y, Nishie A, Ishigami K, Ushijima Y, Takayama Y, et al. Mass-forming intrahepatic cholangiocarcinoma: enhancement patterns in the arterial phase of dynamic hepatic CT - Correlation with clinicopathological findings. Eur Radiol. 2017;27:498–506.

    Article  PubMed  Google Scholar 

  26. Türkoğlu MA, Yamamoto Y, Sugiura T, Okamura Y, Ito T, Ashida R, et al. The favorable prognosis after operative resection of hypervascular intrahepatic cholangiocarcinoma: a clinicopathologic and immunohistochemical study. Surgery. 2016;160:683–90.

    Article  PubMed  Google Scholar 

  27. Dover LL, Jacob R, Wang TN, Richardson JH, Redden DT, Li P, et al. Improved postoperative survival for intraductal-growth subtype of intrahepatic cholangiocarcinoma. Am Surg. 2016;82:1133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakanuma Y, Jang KT, Fukushima N, Furukawa T, Hong SM, Kim H, et al. A statement by the Japan-Korea expert pathologists for future clinicopathological and molecular analyses toward consensus building of intraductal papillary neoplasm of the bile duct through several opinions at the present stage. J Hepatobiliary Pancreat Sci. 2018;25:181–7.

    Article  PubMed  Google Scholar 

  29. Nakanuma Y, Uesaka K, Kakuda Y, Sugino T, Kubota K, Furukawa T, et al. Intraductal papillary neoplasm of bile duct: updated clinicopathological characteristics and molecular and genetic alterations. J Clin Med. 2020;9:3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gordon-Weeks AN, Jones K, Harriss E, Smith A, Silva M. Systematic review and meta-analysis of current experience in treating IPNB: clinical and pathological correlates. Ann Surg. 2016;263:656–63.

    Article  PubMed  Google Scholar 

  31. Kim JR, Jang KT, Jang JY, Lee K, Kim JH, Kim H, et al. Clinicopathologic analysis of intraductal papillary neoplasm of bile duct: Korean multicenter cohort study. HPB (Oxford). 2020;2:1139–48.

    Article  Google Scholar 

  32. Kubota K, Jang JY, Nakanuma Y, Jang KT, Haruyama Y, Fukushima N, et al. Clinicopathological characteristics of intraductal papillary neoplasm of the bile duct: a Japan-Korea collaborative study. J Hepatobiliary Pancreat Sci. 2020;27:581–97.

    Article  PubMed  Google Scholar 

  33. Onoe S, Ebata T, Yokoyama Y, Igami T, Mizuno T, Yamaguchi J, et al. A clinicopathological reappraisal of intraductal papillary neoplasm of the bile duct (IPNB): a continuous spectrum with papillary cholangiocarcinoma in 181 curatively resected cases. HPB (Oxford). 2021;23:1525–32.

    Article  PubMed  Google Scholar 

  34. Aishima S, Oda Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary Pancreat Sci. 2015;22:94–100.

    Article  PubMed  Google Scholar 

  35. Sasaki M, Sato Y, Nakanuma Y. Is nestin a diagnostic marker for combined hepatocellular-cholangiocarcinoma? Histopathology. 2022;80:859–68.

    Article  CAS  PubMed  Google Scholar 

  36. Sigel CS, Drill E, Zhou Y, Basturk O, Askan G, Pak LM, et al. Intrahepatic cholangiocarcinomas have histologically and immunophenotypically distinct small and large duct patterns. Am J Surg Pathol. 2018;42:1334–45.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Misumi K, Hayashi A, Shibahara J, Arita J, Sakamoto Y, Hasegawa K, et al. Intrahepatic cholangiocarcinoma frequently shows loss of BAP1 and PBRM1 expression, and demonstrates specific clinicopathological and genetic characteristics with BAP1 loss. Histopathology. 2017;70:766–74.

    Article  PubMed  Google Scholar 

  38. Ahn KS, Kang KJ. Molecular heterogeneity in intrahepatic cholangiocarcinoma. World J Hepatol. 2020;12:1148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wagner BJ, Plum PS, Apel K, Scherer M, Buchner D, Brikmann S, et al. Protein-loss of SWI/SNF-complex core subunits influences prognosis dependent on histological subtypes of intra- and extrahepatic cholangiocarcinoma. Oncol Lett. 2021;21:349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka M, Shibahara J, Ishikawa S, Ushiku T, Morikawa T, Shinozaki-Ushiku A, et al. EVI1 expression is associated with aggressive behavior in intrahepatic cholangiocarcinoma. Virchows Arch. 2019;474:39–46.

    Article  CAS  PubMed  Google Scholar 

  41. Song G, Shi Y, Meng L, Ma J, Huang S, Zhang J, et al. Single-cell transcriptomic analysis suggests two molecularly subtypes of intrahepatic cholangiocarcinoma. Nat Commun. 2022;13:1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerber TS, Müller L, Bartsch F, Groger LK, Schindeldecker M, Ridder DA, et al. Integrative analysis of intrahepatic cholangiocarcinoma subtypes for improved patient stratification: clinical, pathological, and radiological considerations. Cancers (Basel). 2022;14:3156.

    Article  PubMed  Google Scholar 

  43. Yeh YC, Lei HJ, Chen MH, Ho HL, Chiu LY, Ki CP, et al. C-reactive protein (CRP) is a promising diagnostic immunohistochemical marker for intrahepatic cholangiocarcinoma and is associated with better prognosis. Am J Surg Pathol. 2017;41:1630–41.

    Article  PubMed  Google Scholar 

  44. Akita M, Sawada R, Komatsu M, Suleman N, Itoh T, Ajiki T, et al. An immunostaining panel of C-reactive protein, N-cadherin, and S100 calcium binding protein P is useful for intrahepatic cholangiocarcinoma subtyping. Hum Patho. 2021;109:45–52.

    Article  CAS  Google Scholar 

  45. Chung T, Rhee H, Nahm JH, Jeon Y, Yoo JE, Kim YJ, et al. Clinicopathological characteristics of intrahepatic cholangiocarcinoma according to gross morphologic type: cholangiolocellular differentiation traits and inflammation- and proliferation-phenotypes. HPB (Oxford). 2020;22:864–73.

    Article  PubMed  Google Scholar 

  46. Yamada M, Yamamoto Y, Sugiura T, Kakuda Y, Ashida R, Tamura S, et al. Comparison of the clinicopathological features in small bile duct and bile ductular type intrahepatic cholangiocarcinoma. Anticancer Res. 2019;39:2121–7.

    Article  CAS  PubMed  Google Scholar 

  47. Kinoshita M, Kubo S, Nakanuma Y, Sato Y, Takemura S, Tanaka S, et al. Pathological spectrum of bile duct lesions from chronic bile duct injury to invasive cholangiocarcinoma corresponding to bile duct imaging findings of occupational cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2016;23:92–101.

    Article  PubMed  Google Scholar 

  48. Komuta M, Govaere O, Vandecaveye V, Akiba J, Steenbergen WV, Verslype C, et al. Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology. 2012;55:1876–88.

    Article  CAS  PubMed  Google Scholar 

  49. Chung T, Park YN. Up-to-date pathologic classification and molecular characteristics of intrahepatic cholangiocarcinoma. Front Med (Lausanne). 2022;9: 857140.

    Article  PubMed  Google Scholar 

  50. Wang M, Chen Z, Guo P, Wang Y, Chen G. Therapy for advanced cholangiocarcinoma: current knowledge and future potential. J Cell Mol Med. 2021;25:618–28.

    Article  PubMed  Google Scholar 

  51. Komuta M. Intrahepatic cholangiocarcinoma: tumour heterogeneity and its clinical relevance. Clin Mol Hepatol. 2022;28:396–407.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann Oncol. 2021;32:1111–26.

    Article  CAS  PubMed  Google Scholar 

  53. Kendall T, Verheij J, Gaudio E, Evert M, Guido M, Goeppert B, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019;39(Suppl 1):7–18.

    Article  CAS  PubMed  Google Scholar 

  54. Zen Y. Intrahepatic cholangiocarcinoma: typical features, uncommon variants, and controversial related entities. Hum Pathol. 2022;S0046–8177(22):00146.

    Google Scholar 

  55. Ma B, Meng H, Tian Y, Wan Y, Song T, Zhang T, et al. Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma. BMC Cancer. 2020;20:318.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim Y, Lee K, Jeong S, Wen X, Cho NY, Kang GH. DLEC1 methylation is associated with a better clinical outcome in patients with intrahepatic cholangiocarcinoma of the small duct subtype. Virchows Arch. 2019;475:49–58.

    Article  CAS  PubMed  Google Scholar 

  57. Akita M, Sofue K, Fujikura K, Otani K, Itoh T, Ajiki T, et al. Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma. HPB (Oxford). 2019;21:226–34.

    Article  PubMed  Google Scholar 

  58. Lendvai G, Szekerczés T, Illyés I, Dóra R, Kontsek E, Gógl A, et al. Cholangiocarcinoma: classification, histopathology and molecular carcinogenesis. Pathol Oncol Res. 2020;26:3–15.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng Y, Qin Y, Gong W, Li H, Li B, Wang Y, et al. Specific genomic alterations and prognostic analysis of perihilar cholangiocarcinoma and distal cholangiocarcinoma. J Gastrointest Oncol. 2021;12:2631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ruzzenente A, Fassan M, Conci S, Simbolo M, Lawlor RT, Pedrazzani C, et al. Cholangiocarcinoma heterogeneity revealed by multigene mutational profiling: clinical and prognostic relevance in surgically resected patients. Ann Surg Oncol. 2016;23:1699–707.

    Article  PubMed  Google Scholar 

  61. Kubo S, Shinkawa H, Asaoka Y, Ioka T, Igaki H, Izumi N, et al. Liver cancer study group of Japan clinical practice guidelines for intrahepatic cholangiocarcinoma. Liver Cancer. 2022;11:290–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benson AB, D’Angelica MI, Abbott DE, Anaya DA, Anders R, Are C, et al. Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19:541–65.

    Article  PubMed  Google Scholar 

  63. Kim SH, Han DH, Choi GH, Choi JS, Kim KSI. Oncologic impact of lymph node dissection for intrahepatic cholangiocarcinoma: a propensity score-matched study. J Gastrointest Surg. 2019;23:538–44.

    Article  PubMed  Google Scholar 

  64. Zhang XF, Lv Y, Weiss M, Popescu I, Marques H, Aldrighetti L, et al. Should utilization of lymphadenectomy vary according to morphologic subtype of intrahepatic cholangiocarcinoma? Ann Surg Oncol. 2019;26:2242–50.

    Article  PubMed  Google Scholar 

  65. Adachi T, Eguchi S, Beppu T, Ueno S, Shiraishi M, Okuda K, et al. Prognostic impact of preoperative lymph node enlargement in intrahepatic cholangiocarcinoma: a multi-institutional study by the kyushu study group of liver surgery. Ann Surg Oncol. 2015;22:2269–78.

    Article  PubMed  Google Scholar 

  66. Bagante F, Gani F, Spolverato G, Xu L, Alexandrescu S, Marques HP, et al. Intrahepatic cholangiocarcinoma: prognosis of patients who did not undergo lymphadenectomy. J Am Coll Surg. 2015;221:1031-40.e1-4.

    Article  PubMed  Google Scholar 

  67. Zhang XF, Xue F, Dong DH, Weiss M, Popescu I, Marques HP, et al. Number and station of lymph node metastasis after curative-intent resection of intrahepatic cholangiocarcinoma impact prognosis. Ann Surg. 2021;274:e1187–95.

    Article  PubMed  Google Scholar 

  68. Sahara K, Tsilimigras DI, Merath K, Bagante F, Guglielmi A, Aldrighetti L, et al. Therapeutic index associated with lymphadenectomy among patients with intrahepatic cholangiocarcinoma: which patients benefit the most from nodal evaluation? Ann Surg Oncol. 2019;26:2959–68.

    Article  PubMed  Google Scholar 

  69. Sposito C, Busset MD, Virdis M, Citterio D, Flores M, Bongini M, et al. The role of lymphadenectomy in the surgical treatment of intrahepatic cholangiocarcinoma: a review. Eur J Surg Oncol. 2022;48:150–9.

    Article  PubMed  Google Scholar 

  70. Machairas N, Lang H, Jayant K, Raptis DA, Sotiropoulos GC. Intrahepatic cholangiocarcinoma: limitations for resectability, current surgical concepts and future perspectives. Eur J Surg Oncol. 2020;46:740–6.

    Article  PubMed  Google Scholar 

  71. Li D-Y, Zhang H-B, Yang N, Quan Y, Yang G-S. Routine lymph node dissection may be not suitable for all intrahepatic cholangiocarcinoma patients: results of a monocentric series. World J Gastroenterol. 2013;19:9084–91.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Umeda Y, Takagi K, Matsuda T, Fuji T, Kojima T, Satoh D, et al. Clinical implications and optimal extent of lymphadenectomy for intrahepatic cholangiocarcinoma: a multicenter analysis of the therapeutic index. Ann Gastroenterol Surg. 2022;7:512–22.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Umeda Y, Mitsuhashi T, Kojima T, Satoh D, Sui K, Endo Y, et al. Impact of lymph node dissection on clinical outcomes of intrahepatic cholangiocarcinoma: inverse probability of treatment weighting with survival analysis. J Hepatobiliary Pancreat Sci. 2022;29:217–29.

    Article  PubMed  Google Scholar 

  74. Klatskin G. Adenocarcinoma of the hepatic duct at its bifurcation within the porta hepatis. Am J Med. 1965;38:241–56.

    Article  CAS  PubMed  Google Scholar 

  75. Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224:463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu J, Li B, Li FY, Ye H, Xiong XZ, Cheng NS. Long-term outcome and prognostic factors of intrahepatic cholangiocarcinoma involving the hepatic hilus versus hilar cholangiocarcinoma after curative-intent resection: Should they be recognized as perihilar cholangiocarcinoma or differentiated? Eur J Surg Oncol. 2019;45:2173–9.

    Article  PubMed  Google Scholar 

  77. Zhang XF, Bagante F, Chen Q, Beal EW, Lv Y, Weiss M, et al. Perioperative and long-term outcome of intrahepatic cholangiocarcinoma involving the hepatic hilus after curative-intent resection: comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma. Surgery. 2018;163:1114–20.

    Article  PubMed  Google Scholar 

  78. Sano T, Shimada K, Sakamoto Y, Ojima H, Esaki M, Kosuge T. Prognosis of perihilar cholangiocarcinoma: hilar bile duct cancer versus intrahepatic cholangiocarcinoma involving the hepatic hilus. Ann Surg Oncol. 2008;15:590–9.

    Article  PubMed  Google Scholar 

  79. Ebata T, Kamiya J, Nishio H, Nagasaka T, Numura Y, Nagino M. The concept of perihilar cholangiocarcinoma is valid. Br J Surg. 2009;96:926–34.

    Article  CAS  PubMed  Google Scholar 

  80. Ohtsuka M, Ito H, Kimura F, Simizu H, Togawa A, Yoshidome H, et al. Results of surgical treatment for intrahepatic cholangiocarcinoma and clinicopathological factors influencing survival. Br J Surg. 2002;89:1525–31.

    Article  CAS  PubMed  Google Scholar 

  81. Ohiwa T, Ebata T, Mizuno T, Yokoyama Y, Yamaguchi J, Onoe S, et al. Occult synchronous liver metastasis from perihilar cholangiocarcinoma. Surgery. 2019;166:290–6.

    Article  PubMed  Google Scholar 

  82. Hirohashi K, Uenishi T, Kubo S, Yamamoto T, Tanaka H, Shuto T, et al. Macroscopic types of intrahepatic cholangiocarcinoma: clinicopathologic features and surgical outcomes. Hepatogastroenterology. 2002;49:326–9.

    PubMed  Google Scholar 

  83. Orimo T, Kamiyama T, Mitsuhashi T, Kamachi H, Yokoo H, Wakayama K, et al. Impact of tumor localization on the outcomes of surgery for an intrahepatic cholangiocarcinoma. J Gastroenterol. 2018;53:1206–15.

    Article  PubMed  Google Scholar 

  84. Yoh T, Hatano E, Yamanaka K, Nishio T, Seo S, Taura K, et al. Is surgical resection justified for advanced intrahepatic cholangiocarcinoma? Liver Cancer. 2016;5:280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149:565–74.

    Article  PubMed  Google Scholar 

  86. Uenishi T, Ariizumi S, Aoki T, Ebata T, Ohtsuka M, Tanaka E, et al. Proposal of a new staging system for mass-forming intrahepatic cholangiocarcinoma: a multicenter analysis by the study group for hepatic surgery of the Japanese society of Hepato-Biliary-pancreatic surgery. J Hepatobiliary Pancreat Sci. 2014;21:499–508.

    Article  PubMed  Google Scholar 

  87. Ribero D, Pinna AD, Guglielmi A, Ponti A, Nuzzo G, Giulini SM, et al. Surgical approach for long-term survival of patients with intrahepatic cholangiocarcinoma: a multi-institutional analysis of 434 patients. Arch Surg. 2012;147:1107–13.

    Article  PubMed  Google Scholar 

  88. Sakamoto Y, Kokudo N, Matsuyama Y, Sakamoto M, Izumi N, Kadoya M, et al. Proposal of a new staging system for intrahepatic cholangiocarcinoma: analysis of surgical patients from a nationwide survey of the liver cancer study group of Japan. Cancer. 2016;122:61–70.

    Article  PubMed  Google Scholar 

  89. Uchiyama K, Yamamoto M, Yamaue H, Ariizumi S, Aoki T, Kokudo N, et al. Impact of nodal involvement on surgical outcomes of intrahepatic cholangiocarcinoma: a multicenter analysis by the study group for hepatic surgery of the Japanese society of Hepato-Biliary-pancreatic surgery. J Hepatobiliary Pancreat Sci. 2011;18:443–52.

    Article  PubMed  Google Scholar 

  90. Ebata T, Kosuge T, Hirano S, Unno M, Yamamoto M, Miyazaki M, et al. Proposal to modify the International union against cancer staging system for perihilar cholangiocarcinomas. Br J Surg. 2014;101:79–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AM, YH, and ZY: conception of the work, search of the literature, interpretation of the data, and drafting of the article. YH, and TD: critical revision of the article for important intellectual content. YZ and FT: critical revision of the article for important intellectual content and supervision of the work.

Corresponding author

Correspondence to Hiroaki Yanagimoto.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare. There was no grant or financial support for this study.

Ethical approval

Because this is a literature review article, IRB approval was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akita, M., Yanagimoto, H., Tsugawa, D. et al. Surgical interpretation of the WHO subclassification of intrahepatic cholangiocarcinoma: a narrative review. Surg Today (2024). https://doi.org/10.1007/s00595-024-02825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00595-024-02825-x

Keywords

Navigation