Skip to main content
Log in

The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Forest trees are colonised by different species of ectomycorrhizal (ECM) fungi that interact competitively or mutualistically with one another. Most ECM fungi can produce sporocarps. To date, the effects of co-colonising fungal species on sporocarp formation in ECM fungi remain unknown. In this study, we examined host plant growth, mycorrhizal colonisation, and sporocarp formation when roots of Pinus densiflora are colonised by Laccaria japonica and three other ECM fungal species (Cenococcum geophilum, Pisolithus sp., and Suillus luteus). Sporocarp numbers were recorded throughout the experimental period. The biomass, photosynthetic rate, and mycorrhizal colonisation rate of the seedlings were also measured at 45 days, 62 days, and 1 year after seedlings were transplanted. Results indicated that C. geophilum and S. luteus may negatively impact mycorrhizal colonisation and sporocarp formation in L. japonica. Sporocarp formation in L. japonica was positively correlated with conspecific mycorrhizal colonisation but negatively correlated with the biomass of seedlings of P. densiflora. The co-occurring ECM fungi largely competed with L. japonica, resulting in various effects on mycorrhizal colonisation and sporocarp formation in L. japonica. A variety of mechanisms may be involved in the competitive interactions among the different ECM fungal species, including abilities to more rapidly colonise root tips, acquire soil nutrients, or produce antibiotics. These mechanisms need to be confirmed in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Burgess TI, Malajczuk N, Grove TS (1993) The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. and E. diversicolor F. Muell. Plant Soil 153:155–164

    Article  CAS  Google Scholar 

  • Burgess T, Dell B, Malajczuk N (1994) Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739

    Article  Google Scholar 

  • Cairney J, Chambers S (1997) Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7:117–131

    Article  Google Scholar 

  • Cairney J, Smith S (1992) Influence of intracellular phosphorus concentration on phosphate absorption by the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol Res 96:673–676

    Article  CAS  Google Scholar 

  • Chen Y, Nara K, Wen Z, Shi L, Xia Y, Shen Z, Lian C (2015) Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Mycorrhiza 25:561–571

    Article  CAS  PubMed  Google Scholar 

  • Colpaert JV, Van Assche JA, Luijtens K (1992) The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol 120:127–135

    Article  Google Scholar 

  • Dalong M, Luhe W, Guoting Y, Liqiang M, Chun L (2011) Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination. Braz J Microbiol 42:1197–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Varga H, Águeda B, Martínez-Peña F, Parladé J, Pera J (2012) Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22:59–68

    Article  PubMed  Google Scholar 

  • Dighton J, Thomas E, Latter P (1987) Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biol Fertil Soils 4:145–150

    Article  Google Scholar 

  • Douhan GW, Huryn KL, Douhan LI (2007) Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex. Mycologia 99:812–819

    Article  CAS  PubMed  Google Scholar 

  • Erland S, Finlay R (1992) Effects of temperature and incubation time on the ability of three ectomycorrhizal fungi to colonize Pinus sylvestris roots. Mycol Res 96:270–272

    Article  Google Scholar 

  • Fortin JA, Lamhamedi MS (2009) Ecophysiology of sporocarp development of ectomycorrhizal basidiomycetes associated with boreal forest gymnosperms. In: Khasa D, Piché Y, AP Coughlan (eds) Advances in mycorrhizal science and technology. NRC Research Press, Ottawa. pp 161–173

    Google Scholar 

  • Frankland JC, Harrison AF (1985) Mycorrhizal infection of Betula pendula and Acer pseudoplatanus: relationships with seedling growth and soil factors. New Phytol 101:133–151

    Article  Google Scholar 

  • Gabella S, Abba S, Duplessis S, Montanini B, Martin F, Bonfante P (2005) Transcript profiling reveals novel marker genes involved in fruiting body formation in Tuber borchii. Eukaryot Cell 4:1599–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Barreda S, Molina-Grau S, Reyna S (2015) Reducing the infectivity and richness of ectomycorrhizal fungi in a calcareous Quercus ilex forest through soil preparations for truffle plantation establishment: a bioassay study. Fungal Biol 119:1137–1143

    Article  PubMed  Google Scholar 

  • Godbout C, Fortin JA (1990) Cultural control of basidiome formation in Laccaria bicolor with container-grown white pine seedlings. Mycol Res 94:1051–1058

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  Google Scholar 

  • Hortal S, Pera J, Parladé J (2008) Tracking mycorrhizas and extraradical mycelium of the edible fungus Lactarius deliciosus under field competition with Rhizopogon spp. Mycorrhiza 18:69–77

    Article  PubMed  Google Scholar 

  • Kennedy P (2010) Ectomycorrhizal fungi and interspecific competition: species interactions, community structure, coexistence mechanisms, and future research directions. New Phytol 187:895–910

    Article  PubMed  Google Scholar 

  • Kennedy PG, Hortal S, Bergemann SE, Bruns TD (2007) Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. J Ecol 95:1338–1345

    Article  CAS  Google Scholar 

  • Kennedy PG, Peay KG, Bruns TD (2009) Root tip competition among ectomycorrhizal fungi: are priority effects a rule or an exception? Ecology 90:2098–2107

    Article  PubMed  Google Scholar 

  • Kipfer T, Wohlgemuth T, van der Heijden MG, Ghazoul J, Egli S (2012) Growth response of drought-stressed Pinus sylvestris seedlings to single-and multi-species inoculation with ectomycorrhizal fungi. PLoS One 7:e35275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N (2005) Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 165:305–316

    Article  PubMed  Google Scholar 

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    Article  PubMed  Google Scholar 

  • Kuikka K, Härmä E, Markkola A, Rautio P, Roitto M, Saikkonen K, Ahonen-Jonnarth U, Finlay R, Tuomi J (2003) Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84:2051–2061

    Article  Google Scholar 

  • Last FT, Mason PA, Pelham J, Ingleby K (1984) Fruitbody production by sheathing mycorrhizal fungi: effects of ‘host’ genotypes and propagating soils. For Ecol Manag 9:221–227

    Article  Google Scholar 

  • Lian C, Hogetsu T, Matsushita N, Guerin-Laguette A, Suzuki K, Yamada A (2003) Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma matsutake, by an ISSR-suppression-PCR method. Mycorrhiza 13:27–31

    Article  CAS  PubMed  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above-and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Lu N, Yu M, Cui M, Luo Z, Feng Y, Cao S, Sun Y, Li Y (2016) Effects of different ectomycorrhizal fungal inoculates on the growth of Pinus tabulaeformis seedlings under greenhouse conditions. Forests 7:1–14

    Google Scholar 

  • Mahmood S (2003) Colonisation of spruce roots by two interacting ectomycorrhizal fungi in wood ash amended substrates. FEMS Microbiol Lett 221:81–87

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Díez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol 153:345–357

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Secq MPOL, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Mateos E, Olaizola J, Pajares JA, Pando V, Diez JJ (2017) Influence of Suillus luteus on Fusarium damping-off in pine seedlings. Afr J Biotechnol 16:268–273

    Article  CAS  Google Scholar 

  • McAfee B, Fortin J (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J Bot 64:848–852

    Article  Google Scholar 

  • McAfee BJ, Soil F-JA (1989) Ectomycorrhizal colonization on black spruce and jack pine seedlings outplanted in reforestation sites. Plant Soil 116:9–17. https://doi.org/10.1007/BF02327251

    Article  Google Scholar 

  • Mohan V, Nivea R, Menon S (2015) Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi. JAIR 3:408–412

    CAS  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi. 158:193–206

  • Park SH, Jeong HS, Lee YM, Eom AH, Lee CS (2006) Identification of ectomycorrhizal fungi from Pinus densiflora seedlings at an abandoned coal mining spoils. J Ecol Environ 29:143–149

    Article  Google Scholar 

  • Parladé J, Alvarez IF (1993) Coinoculation of aseptically grown Douglas fir with pairs of ectomycorrhizal fungi. Mycorrhiza 3:93–96

    Article  Google Scholar 

  • Parladé J, Hortal S, Pera J, Galipienso L (2007) Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. J Biotechnol 128:14–23

    Article  CAS  PubMed  Google Scholar 

  • Parladé J, Martínez-Peña F, Pera J (2017) Effects of forest management and climatic variables on the mycelium dynamics and sporocarp production of the ectomycorrhizal fungus Boletus edulis. For Ecol Manag 390:73–79

    Article  Google Scholar 

  • Pickles BJ, Genney DR, Potts JM, Lennon JJ, Anderson IC, Alexander IJ (2010) Spatial and temporal ecology of scots pine ectomycorrhizas. New Phytol 186:755–768

    Article  CAS  PubMed  Google Scholar 

  • Pickles BJ, Genney DR, Anderson IC, Alexander IJ (2012) Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. Mol Ecol 21:5110–5123

    Article  PubMed  Google Scholar 

  • R Core Team B (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/. Version 3.5.1. Released July 2, 2018. Accessed October 3, 2018

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 102–132

    Google Scholar 

  • Sakamoto Y (2018) Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol Rev 32:236–248

    Article  Google Scholar 

  • Satomura T, Nakatsubo T, Horikoshi T (2003) Estimation of the biomass of fine roots and mycorrhizal fungi: a case study in a Japanese red pine (Pinus densiflora) stand. J For Res 8:221–225

    Article  Google Scholar 

  • Shaw T, Dighton J, Sanders F (1995) Interactions between ectomycorrhizal and saprotrophic fungi on agar and in association with seedlings of lodgepole pine (Pinus contorta). Mycol Res 99:159–165

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic press, New York

    Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Teramoto M, Wu B, Hogetsu T (2012) Transfer of 14C-photosynthate to the sporocarp of an ectomycorrhizal fungus Laccaria amethystina. Mycorrhiza 22:219–225

    Article  CAS  PubMed  Google Scholar 

  • Thomson BD, Grove TS, Malajczuk N, Hardy GSJ (1994) The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill. in relation to root colonization and hyphal development in soil. New Phytol 126:517–524

  • Vaario LM, Yang X, Yamada A (2017) Biogeography of the Japanese gourmet fungus, Tricholoma matsutake: a review of the distribution and functional ecology of Matsutake. In: Biogeography of Mycorrhizal Symbiosis. Springer, pp 319–344

  • Velmala SM, Rajala T, Heinonsalo J, Taylor AF, Pennanen T (2014) Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast-and slow-growing phenotypes. New Phytol 201:610–622

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve N, Tacon F, Bouchard D (1991) Survival of inoculated Laccaria bicolor in competition with native ectomycorrhizal fungi and effects on the growth of outplanted Douglasfir seedlings. Plant Soil 135:95–107

    Article  Google Scholar 

  • Vincenot L, Nara K, Sthultz C, Labbe J, Dubois M, Tedersoo L, Martin F, Selosse M (2012) Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete Laccaria amethystina complex. Mol Ecol 21:281–299

    Article  CAS  PubMed  Google Scholar 

  • Vincenot L, Popa F, Laso F, Donges K, Rexer KH, Kost G, Yang ZL, Nara K, Selosse MA (2017) Out of Asia: biogeography of fungal populations reveals Asian origin of diversification of the Laccaria amethystina complex, and two new species of violet Laccaria. Fungal Biol 121:939–955

    Article  PubMed  Google Scholar 

  • Wang Y, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:1063–1073

    Article  Google Scholar 

  • Wang Y, Cummings N, Guerin-Laguette A (2012) Cultivation of basidiomycete edible ectomycorrhizal mushrooms: Tricholoma, Lactarius, and Rhizopogon. In: Edible Ectomycorrhizal Mushrooms. Springer, pp 281–304

  • Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159

    Article  Google Scholar 

  • Xu H, Navarro-Ródenas A, Cooke JEK, Zwiazek JJ (2016) Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca. Mycorrhiza 26:19–31

    Article  PubMed  Google Scholar 

  • Yamada A, Katsuya K (2001) The disparity between the number of ectomycorrhizal fungi and those producing fruit bodies in a Pinus densiflora stand. Mycol Res 105:957–965

    Article  Google Scholar 

  • Zhang RQ, Tang M, Chen H, Tian ZQ (2011) Effects of ectomycorrhizal fungi on damping-off and induction of pathogenesis-related proteins in Pinus tabulaeformis seedlings inoculated with Amanita vaginata. For Pathol 41:262–269

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Mitsuko Goto, Ruiyang Xu, Jiali Li, Suguru Tanaka, Masayuki Kubota for technical assistance; the staff of the University of Tokyo Tanashi Forest for providing the forest soils and the vacuum freeze dryer; Kazuhide Nara for providing the cultures of ECM fungi; Maki Narimatsu for providing the seeds of P. densiflora. We are thankful to Kenji Fukuda for providing insightful comments which improved this manuscript. We thank Dr. Jan Colpaert and two anonymous reviewers for revising and useful comments on the manuscript.

Funding

This work was supported in part by a JSPS KAKENHI (granted to CL, no. 17H03824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlan Lian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure S1

Agarose gel electrophoresis of PCR products from amplification using the primer Lj03f/03r. Lane M: 100 bp ladder marker. Lane 1: DNA extracted from mycelia of Laccaria japonica. Lane 2: negative control. Lane 3: DNA extracted from mycelia of Cenococcum geophilum. Lane 4: DNA extracted from mycelia of Pisolithus sp. Lane 5: DNA extracted from mycelia of Suillus luteus. Lane 6: DNA extracted from soil control. Lane 7: DNA extracted from non-mycorrhizal root tips. (PDF 42 kb)

Supplementary Figure S2

The net photosynthetic rates of (a) non-mycorrhizal seedlings (NM), (b) seedlings colonised by Laccaria japonica (Lj), and (c) seedlings colonised by Cenococcum geophilum (Cg), Pisolithus sp. (PS), and Suillus luteus (Sl) at 45 days, 62 days, and 1 year after seedlings were transplanted into pots. Each pot contained four seedlings. Con: control with only NM seedlings; Lj + NM: treatment with NM seedlings and Lj-colonised seedlings; Lj + Cg: treatment with NM seedlings and Lj- and Cg-colonised seedlings; Lj + PS: treatment with NM seedlings and Lj- and PS-colonised seedlings; Lj + Sl: treatment with NM seedlings and Lj- and Sl-colonised seedlings. Values are represented as mean ± SD (n = 3–5). Pairwise comparisons using the Wilcoxon rank sum test were conducted to test for differences among treatments. Letters indicate significant differences (P < 0.05, P value adjusted using the BH method). The Steel test was also used to test for differences between the control and each treatment, *P < 0.05. (PDF 30 kb)

Supplementary Table S1

(DOCX 16 kb)

Supplementary Table S2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Vaario, LM., Xia, Y. et al. The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora. Mycorrhiza 29, 207–218 (2019). https://doi.org/10.1007/s00572-019-00890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00890-6

Keywords

Navigation