Skip to main content
Log in

Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Tricholoma matsutake is an ectomycorrhizal fungus that forms commercially important mushrooms in coniferous forests. In this study, we explored the ability of T. matsutake to form mycorrhizae with Pinus sylvestris by inoculating emblings produced through somatic embryogenesis (SE) in an aseptic culture system. Two months after inoculation, clones with less phenolic compounds in the tissue culture phase formed mycorrhizae with T. matsutake, while clones containing more phenols did not. Effects of inoculation on embling growth varied among clones; two of the four tested showed a significant increase in biomass and two had a significant increase in root density. In addition, results suggest that clones forming well-developed mycorrhizae absorbed more Al, Fe, Na, P, and Zn after 8 weeks of inoculation. This study illustrates the value of SE materials in experimental work concerning T. matsutake as well as the role played by phenolic compounds in host plant response to infection by mycorrhizal fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24:372–383

    Article  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The role of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathl 11:705–719

    CAS  Google Scholar 

  • Bryla D, Koide RT (1990) The role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. II. Eight wild accessions and two cultivars of Lycopersicon esculentum Mill. Oecologia 84:82–92

    Article  Google Scholar 

  • Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MAK (2008) Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 69:2149–2156

    Article  PubMed  Google Scholar 

  • Courty PE, Labbe J, Kohler A, Marcxais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danell E (1999) Cantharellus. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer Verlag, Berlin, pp 253–267

    Chapter  Google Scholar 

  • Finnish Forest Research Institute (2013) Statistical Yearbook of Forestry. Esa Ylitalo (ed.) p. 387. ISBN 978-951-40-2392-7, Vammalan Kirjapaino Oy

  • Grönberg H, Hietala AM, Haahtela K (2009) Analysing scots pine defence-related transcripts and fungal DNA levels in seedlings single- or dual-inoculated with endophytic and pathogenic Rhizoctonia species. For Pathol 39:377–389

    Article  Google Scholar 

  • Guerin-Laguette A, Shindo K, Matsushita N, Suzuki K, Lapeyrie F (2004) The mycorrhizal fungus Tricholoma matsutake stimulates Pinus densiflora seedling growth in vitro. Mycorrhiza 14:397–400

    Article  PubMed  Google Scholar 

  • Hamada M (1964) General introduction to Tricholoma matsutake (in Japanese), In: The Matsutake Research Association (ed), Matsutake (Tricholoma matsutake Singer) – Its fundamental studies and economic production of the fruit-body. The Matsutake Research Association, Kyoto, p 6

    Google Scholar 

  • Hosford D, Plz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake. USDA general technical report PNW-GTR-412

  • Julkunen-Tiitto R, Sorsa S (2001) Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J Chem Ecol 27:779–789

    Article  CAS  PubMed  Google Scholar 

  • Keinonen-Mettälä K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250

    Article  Google Scholar 

  • Klimaszewska K, Trontin JF, Becwar M, Devillard C, Park YS, Lelu-Walter M-A (2007) Recent progress on somatic embryogenesis in four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  • Krakau U, Liesebach M, Aronen T, Lelu-Walter M-A, Schneck V (2013) Scots Pine (Pinus sylvestris L.). In: Påques LE (ed.) Forest Tree Breeding in Europe: current state-of-the-art and perspectives, Managing Forest Ecosystems 25 doi: 10.1007/978-94-007-6146-9_6

  • Laakso K, Sullivan JH and Huttunen S (2000) The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.) Plant Cell and Environ 23:461–472

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG, Davis EA (2003) Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Sci Hortic 99:67–78

    Article  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Aronen T, Pappinen A, Asiegbu FO (2011) Response of somatic embryos of Scots pine to fungal cell wall elicitors. For Pathol 41:75–82

    Article  Google Scholar 

  • Lu J, Kostiainen K, Jaakola L, Heiska S, Harju A, Julkunen-Tiitto R, Venäläinen M, Aronen T (2013) Secondary phenolic compounds in somatic embryogenesis of Pinus sylvestris L.: a preliminary study. In: Park, Y.S. Bonga, J.M. (ed.). Proceedings of the IUFRO Working Party 2.09.02 conference on "Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management", June 25-28, 2012, Brno, Czech Republic. p. 160-162

  • Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in eucalyptus. I. Pure culture synthesis, host specificity, and mycorrhizal compatibility with Pinus radiata. New Phytol 91:467–482

    Article  Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1984) Ectomycorrhiza formation in eucalyptus. II. Ultrastructural examination of compatible and incompatible mycorrhizal fungus inoculation. New Phytol 96:43–53

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections I antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Masui K (1927) A study of the ectomycorrhizas of woody plants. Memoirs of the College of Science, Kyoto Imperial University, Series B III 2: 152-279

  • Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L-M, Intini M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–96. doi:10.1007/s10267-004-0220-x

    Article  CAS  Google Scholar 

  • Murata H, Yamada A, Maruyama T, Endo N, Yamamoto K, Ohira T, Shimokawa T (2013) Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric "shiro". Mycorrhiza 23:235–242

    Article  CAS  PubMed  Google Scholar 

  • Métraux JP (1994) Plants. In: Turner RJ (ed) Immunology: a comparative approach. Wiley, London, pp 1–28

    Google Scholar 

  • Münzenberger B, Heilemann J, Strack D, Kottke I, Oberwinkler F (1990) Phenolics of mycorrhizas and non-mycorrhizal roots of Norway spruce. Planta 182:142–148

    Article  PubMed  Google Scholar 

  • Napierata-Filipiak A, Werner A, Karolewski P (2002) Content of phenolics in mycorrhizal roots of Pinus sylvestris seedlings. Acta Physiol Plant 24:243–247

    Article  Google Scholar 

  • Ogawa M (1978) The biology of matsutake mushroom. Tsukiji Shokan, Tokyo, 326pp; (in Japanese)

    Google Scholar 

  • Saito H, Mitsumata G (2008) Bidding customs and habitat improvement for matsutake (Tricholoma matsutake) in Japan. Econ Bot 62:257–268

    Article  Google Scholar 

  • Savoie JM, Largeteau ML (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microb Biotech 89:971–979. doi:10.1007/s00253-010-3022-4

    Article  CAS  Google Scholar 

  • Smith SE, Read DL (2008) Mycorrhizal symbiosis, 3rd edn. Press, Academic

    Google Scholar 

  • Sutton B (2002) Commercial delivery of genetic improvement to conifer plantation using somatic embryogenesis. Ann For Sci 59:657–661

    Article  Google Scholar 

  • Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation in an interspecific F1 poplar full-sib family. Mycorrhiza 15:87–91

    Article  CAS  PubMed  Google Scholar 

  • Vaario L-M, Pennanen T, Sarjala T, Savonen E-M, Heinonsalo J (2010) Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland—an assessment of in vitro mycorrhiza formation. Mycorrhiza 20:511–518

    Article  PubMed  Google Scholar 

  • Vaario L-M, Heinonsalo J, Spetz P, Pennanen T, Fritze H (2011) Tricholoma matsutake—an ectomycorrhizal fungus, lives between symbiotic and saprophytic when need arises. In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, 4-7 October, 2011, Arcachon. France Vol 1:500–505

    Google Scholar 

  • Vaario L-M, Heinonsalo J, Spetz P, Pennanen T, Heinonen J, Tervahauta A, Fritze H (2012) The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22:409–418

    Article  CAS  PubMed  Google Scholar 

  • Vaario L-M, Pennanen T, Lu J, Palmén J, Leveinen J, Kilpeläinen P, Kitunen V (2013) Evaluation the potential of minerals up taking by Tricholoma matsutake—a valuable mushroom. in 'International conference: Non-wood forest products, health and well-being. 12th-13th of November, Espoo, Finland. Abstracts, p.1

  • Varma A, Hock B (1995) Mycorrhiza: structure, function, molecular biology, and biotechnology. Springer-Verlag, pp.747

  • Wallis CM, Reich RW, Lewis KJ, Huber DPW (2010) Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Can J For Res 40(12):2333–2344

    Article  Google Scholar 

  • Wang Y, Hall IR, Evans LA (1997) Ectomycorrhizal fungi with edible fruit bodies. 1. Tricholoma matsutake and related fungi. Econ Bot 51:311–327. doi:10.1007/BF02862101

  • Wang Y, Cummings N and Guerin-Laguette A (2012) Cultivation of basidiomycete edible ectomycorrhizal mushrooms: Tricholoma, Lactarius, and Rhizopogon. In Zambonelli and Bonito GM (eds.) Edible Ectomycorrhizal Mushrooms, Springer-Verlag Berlin Heidelberg, 281-304

  • Yamada Y, Maeda K, Ohmasa M (1999) Ectomycorrhiza formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40:455–463

    Article  Google Scholar 

  • Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring “shiro”. Mycorrhiza 16:111–116

    Article  PubMed  Google Scholar 

  • Yamada A, Kobayashi H, Murata H, Kalmiş E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20:333–339

    Article  PubMed  Google Scholar 

  • Yamanaka T, Maruyama T, Yamada A, Miyazaki Y, Kikuchi T (2012) Ectomycorrhizal formation on regenerated somatic pine plants after inoculation with Tricholoma matsutake mushroom. Sci Biotechnol 20(2):93–97 (in Japanese with English summary)

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Laboratory of Forest Botany, University of Tokyo for providing the Japanese isolate, A. Siika for help with the illustration, V. Miettinen for help with microscopy sections preparing, and M. Hardman for checking the language. This research was supported by the Foundation for Forest Breeding in Finland and European Regional development Fund of EU for the project “Vegetative propagation–knowhow and technology for enhancing bioeconomy.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Min Vaario.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaario, LM., Lu, J., Koistinen, A. et al. Variation among matsutake ectomycorrhizae in four clones of Pinus sylvestris . Mycorrhiza 25, 195–204 (2015). https://doi.org/10.1007/s00572-014-0601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0601-8

Keywords

Navigation