Skip to main content
Log in

Recent studies on the application of piezoelectric pump in different fields

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Piezoelectric pumps are widely used in electronic instruments, industrial production, scientific applications, fuel supply and other fields. The direction of development of piezoelectric pumps is the integration of transmission devices into microfluidic systems to meet the requirements of precise fluid transfer. In recent decades, researchers have conducted a wide range of research into the application of piezoelectric pumps. This paper focuses on piezoelectric pump applications in areas related to sensing control, heat dissipation cooling, aerospace, robotics, cars, chemical analysis, bioanalysis, MEMS (microelectromechanical control system), DMFC (direct methanol fuel cells), and PEMFC (proton exchange membrane fuel cells), etc. The detailed description of each application field gives an idea of the latest developments in the application of piezoelectric pumps. Finally, conclusions are given and future prospects are considered. The chief benefit of this paper is a broader understanding of the applications of piezoelectric pumps. Some substantial resources are provided for future researchers to explore their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data available on request from the authors: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Akagi J, Zhu F, Hall CJ, Crosier KE, Crosier PS, Wlodkowic D (2014) Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry A 85A(6):537–547

    Article  Google Scholar 

  • Akin Yildirim Y, Toprak A, Tigli O (2018) Piezoelectric membrane actuators for micropump applications using PVDF-TrFE. J Microelectromech Syst 27(1):86–94

    Article  Google Scholar 

  • Akpudo UE, Hur J-W (2021) A cost-efficient MFCC-based fault detection and isolation technology for electromagnetic pumps. Electronics 10(4):439

    Article  Google Scholar 

  • Al-Halhouli AT, Kilani MI, Büttgenbach S (2010) Development of a novel electromagnetic pump for biomedical applications. Sens Actuators A Phys 162(2):172–176

    Article  Google Scholar 

  • Anderson EH, Bales GL, White EV (2003) Application of smart material-hydraulic actuators. In: Smart structures and materials 2003: Industrial and commercial applications of smart structures technologies, vol 5054. SPIE, pp 73–84

  • Bao Q et al (2019) A novel PZT pump with built-in compliant structures. Sensors 19(6):1301

    Article  Google Scholar 

  • Bußmann AB, Grünerbel LM, Durasiewicz CP, Thalhofer TA, Wille A, Richter M (2021) Microdosing for drug delivery application—a review. Sens Actuators A Phys 330:112820

    Article  Google Scholar 

  • Changbin G, Zongxia J, Shuai W, Yaoxing S, Fanggang Z (2014) Active control of fluid pressure pulsation in hydraulic pipe system by bilateral-overflow of piezoelectric direct-drive slide valve. J Dyn Syst Meas Contr 136(3):031025

    Article  Google Scholar 

  • Chen Y-C, Kang T-H, Ingram PN, Cheng Y-H, Yoon E (2015) Osmotically actuated micropumps and control valves for point-of-care applications. J Microelectromech Syst 24(4):982–989

    Article  Google Scholar 

  • Choi A, Vatanabe SL, de Lima CR, Silva ECN (2011) Computational and experimental characterization of a low-cost piezoelectric valveless diaphragm pump. J Intell Mater Syst Struct 23(1):53–63

    Article  Google Scholar 

  • Connacher W et al (2018) Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab Chip 18(14):1952–1996

    Article  Google Scholar 

  • Dau VT, Dinh TX, Sugiyama S (2009) A MEMS-based silicon micropump with intersecting channels and integrated hotwires. J Micromech Microeng 19(12):125016

    Article  Google Scholar 

  • David A, Mathiesen BV, Averfalk H, Werner S, Lund H (2017) Heat roadmap europe: large-scale electric heat pumps in district heating systems. Energies 10(4):578

    Article  Google Scholar 

  • de Lima CR, Vatanabe SL, Choi A, Nakasone PH, Pires RF, Silva ECN (2009) A biomimetic piezoelectric pump: computational and experimental characterization. Sens Actuators A Phys 152(1):110–118

    Article  Google Scholar 

  • Dinh TX, Ogami Y (2009) A principle to generate flow for thermal convective base sensors. J Fluids Eng-Trans ASME 131(4):041401

    Article  Google Scholar 

  • Draheim J, Schneider F, Kamberger R, Mueller C, Wallrabe U (2009) Fabrication of a fluidic membrane lens system. J Micromech Microeng 19(9):095013

    Article  Google Scholar 

  • Fan YW, Zhao WX, Zhang XF, Yu XJ, Luo XB (2022) Development of a piezoelectric pump with unfixed valve. J Micromech Microeng 32(5):055004

    Article  Google Scholar 

  • Glynne-Jones P, Coletti M, White NM, Gabriel SB, Bramanti C (2010) A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines. Acta Astronaut 67(1–2):194–203

    Article  Google Scholar 

  • Guerra D, Polastri M, Battarra M, Suman A, Mucchi E, Pinelli M (2021) Design multistage external gear pumps for dry sump systems: methodology and application. Math Probl Eng 2021:8888128

    Article  Google Scholar 

  • Guo SR, Chen JH, Lu YL, Wang Y, Dong HK (2020) Hydraulic piston pump in civil aircraft: current status, future directions and critical technologies. Chin J Aeronaut 33(1):16–30

    Article  Google Scholar 

  • Habib M, Lantgios I, Hornbostel K (2022) A review of ceramic, polymer and composite piezoelectric materials. J Phys D Appl Phys 55(42)

  • He LP, Zhao D, Li W, Xu QW, Cheng GM (2019) Performance analysis of valveless piezoelectric pump with dome composite structures. Rev Sci Instrum 90(6):065002

    Article  Google Scholar 

  • He LP et al (2021a) Parametric analysis of the output performance of a valveless piezoelectric pump with a bullhorn-shaped structure. Rev Sci Instrum 92(7):075005

    Article  Google Scholar 

  • He LP, Wu XQ, Zhang Z, Wang Z, Zhang BC, Cheng GM (2021b) Experiment analysis of high output pressure piezoelectric pump with straight arm wheeled check valve. J Intell Mater Syst Struct 32(17):1987–1996, Art no 1045389x20987003

  • Hengyu L, Junkao L, Kai L, Yingxiang L (2021) A review of recent studies on piezoelectric pumps and their applications. Mech Syst Signal Process 151:107393

    Article  Google Scholar 

  • Herrera-Robledo M, Arenas C, Morgan-Sagastume JM, Castano V, Noyola A (2011) Chitosan/albumin/CaCO3 as mimics for membrane bioreactor fouling: genesis of structural mineralized-EPS-building blocks and cake layer compressibility. Chemosphere 84(2):191–198

    Article  Google Scholar 

  • Hou Y, He LP, Zhang Z, Yu BJ, Jiang H, Cheng GM (2022) The characters exploration of a piezoelectric pump with fishtail-shaped bluffbody. J Intell Mater Syst Struct 33(7):972–984 Art no. 1045389x211038696

  • Hu B, Yu H (2018) Optimal design and simulation of a microsuction cup integrated with a valveless piezoelectric pump for robotics. Shock Vib 2018:1–16

    Google Scholar 

  • Hu DB, He LP, Zhang Z, Liu YM, Cui LN, Cheng GM (2022) Research on a valveless piezoelectric pump with inner concave triangle structure. Microsyst Technol Micro Nanosyst-Inf Storage Process Syst 28(8):1935–1945

    Google Scholar 

  • Huang P-C, Wang M-H, Chen M-K, Jang L-S (2016) Experimental analysis of time-phase-shift flow sensing based on a piezoelectric peristaltic micropump. J Phys D Appl Phys 49(17):175402

    Article  Google Scholar 

  • Huang J, Zou L, Tian P, Wang Y, Zhang Q (2019) Development of a valveless piezoelectric pump with vortex diodes. J Micromech Microeng 29(12):125006

    Article  Google Scholar 

  • Huang J, Cong XA, Zhang JH, Li K, Liu JM, Zhang Q (2022) A heat exchanger based on the piezoelectric pump for CPU cooling. Sensor Actuators A Phys 342:113620

    Article  Google Scholar 

  • Hwang JY et al (2010a) Periodic fuel supply to a micro-DMFC using a piezoelectric linear actuator. J Micromech Microeng 20(8):085023

    Article  Google Scholar 

  • Hwang JY et al (2010b) Periodic fuel supply to a micro-DMFC using a piezoelectric linear actuator. J Micromech Microeng 20(8):085023

    Article  Google Scholar 

  • Hwang J-H, Bae J-S, Hwang Y-H, Kwon J-Y (2018) Pressurization characteristics of a piezoelectric-hydraulic pump for UAV brake systems. Int J Aeronaut Space Sci 19(3):776–784

    Article  Google Scholar 

  • Jalili N, Wagner J, Dadfarnia M (2003) A piezoelectric driven ratchet actuator mechanism with application to automotive engine valves. Mechatronics 13(8–9):933–956

    Article  Google Scholar 

  • Jang LS, Kan WH (2007) Peristaltic piezoelectric micropump system for biomedical applications. Biomed Microdevices 9(4):619–626

    Article  Google Scholar 

  • Ji J, Qian C, Chen S, Wang C, Kan J, Zhang Z (2021) A serial piezoelectric gas pump with variable chamber height. Sens Actuators A Phys 331:112912

    Article  Google Scholar 

  • Jin H et al (2022) Review on piezoelectric actuators based on high-performance piezoelectric materials. IEEE Trans Ultrason Ferroelectr Freq Control 69(11):3057–3069

    Article  Google Scholar 

  • Kan J et al (2011) Development of piezohydraulic actuator driven by piezomembrane pump. J Intell Mater Syst Struct 22(16):1829–1840

    Article  Google Scholar 

  • Kim GW, Wang KW (2009a) Enhanced control performance of a piezoelectric—hydraulic pump actuator for automotive transmission shift control. Proc Inst Mech Eng Part d: J Automob Eng 224(2):161–174

    Article  Google Scholar 

  • Kim G-W, Wang KW (2009b) Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions. Smart Mater Struct 18(8):085004

    Article  Google Scholar 

  • Kim J et al (2021) High-throughput cell concentration using a piezoelectric pump in closed-loop viscoelastic microfluidics. Micromachines (basel) 12(6):677

    Article  MathSciNet  Google Scholar 

  • Kwak J, Kim HR (2017) Magnetic field analysis of an electromagnetic pump for sodium thermohydraulic test in the sodium test loop for safety simulation and assessment-phase 1. Prog Nucl Energy 101:235–242

    Article  Google Scholar 

  • Lee H, Kwak D-W, Park J-H, Kwon S, Yang M (2020) Design and assembly of a thin-film-based micro pump for a micro-slot die. Int J Precis Eng Manuf 21(12):2335–2344

    Article  Google Scholar 

  • Li Y, Le VT, Goo NS, Kim TH, Lee CS (2017) High actuation force of piezoelectric hybrid actuator with multiple piezoelectric pump design. J Intell Mater Syst Struct 28(18):2557–2571

    Article  Google Scholar 

  • Li XQ, Liu XP, Dong LT, Sun XD, Tang HJ, Liu GJ (2022) A high-performance synthetic jet piezoelectric air pump with petal-shaped channel. Sensors 22(9):3227

    Article  Google Scholar 

  • Liu G et al (2016) An unconventional inchworm actuator based on PZT/ERFs control technology. Appl Bionics Biomech 2016:2804543

    Article  Google Scholar 

  • Liu G, Ma X, Wang C, Sun X, Tang C (2018) Piezoelectric driven self-circulation micromixer with high frequency vibration. J Micromech Microeng 28(8):085010

    Article  Google Scholar 

  • Liu C, Zhu Y, Wu C (2020) Optimization of a synthetic jet based piezoelectric air pump and its application in electronic cooling. Microsyst Technol 26(6):1905–1914

    Article  Google Scholar 

  • Lu S et al (2020) A quintuple-bimorph tenfold-chamber piezoelectric pump used in water-cooling system of electronic chip. IEEE Access 8:186691–186698

    Article  Google Scholar 

  • Ma HK, Huang SH (2009) Innovative design of an air-breathing proton exchange membrane fuel cell with a piezoelectric device. J Fuel Cell Sci Technol 6(3):034501

    Article  Google Scholar 

  • Ma HK, Hou BR, Wu HY, Lin CY, Gao JJ, Kou MC (2007) Development and application of a diaphragm micro-pump with piezoelectric device. Microsyst Technol 14(7):1001–1007

    Article  Google Scholar 

  • Ma HK, Huang SH, Chen BR, Cheng LW (2008a) Numerical study of a novel micro-diaphragm flow channel with piezoelectric device for proton exchange membrane fuel cells. J Power Sources 180(1):402–409

    Article  Google Scholar 

  • Ma H-K, Hou B-R, Lin C-Y, Gao J-J (2008b) The improved performance of one-side actuating diaphragm micropump for a liquid cooling system. Int Commun Heat Mass Transfer 35(8):957–966

    Article  Google Scholar 

  • Ma HK, Huang SH, Wang JS, Hou CG, Yu CC, Chen BR (2010) Experimental study of a novel piezoelectric proton exchange membrane fuel cell with nozzle and diffuser. J Power Sources 195(5):1393–1400

    Article  Google Scholar 

  • Ma H-K, Wang J-S, Chang Y-T (2011) Development of a novel pseudo bipolar piezoelectric proton exchange membrane fuel cell with nozzle and diffuser. J Power Sources 196(8):3766–3772

    Article  Google Scholar 

  • Ma HK, Cheng HM, Cheng WY, Fang FM, Luo WF (2013a) Development of a piezoelectric proton exchange membrane fuel cell stack (PZT-Stack). J Power Sources 240:314–322

    Article  Google Scholar 

  • Ma HK et al (2013b) Development and application of one-sided piezoelectric actuating micropump. Smart Mater Res 2013:1–16

    Google Scholar 

  • Ma T, Sun S, Li B, Chu J (2019) Piezoelectric peristaltic micropump integrated on a microfluidic chip. Sens Actuators A Phys 292:90–96

    Article  Google Scholar 

  • McDonald RC, Hamdan M (2019) Compact direct methanol fuel cell: design approach using commercial micropumps. J Electrochem Energy Convers Storage. https://doi.org/10.1115/1.4040077

    Article  Google Scholar 

  • Mohammed M et al (2019) Studying the response of aortic endothelial cells under pulsatile flow using a compact microfluidic system. Anal Chem 91(18):12077–12084

    Article  Google Scholar 

  • Mohith S, Karanth PN, Kulkarni SM (2019) Recent trends in mechanical micropumps and their applications: a review. Mechatronics 60:34–55

    Article  Google Scholar 

  • Nakao M, Kurashina Y, Imashiro C, Takemura K (2017) A method for collecting single cell suspensions using an ultrasonic pump. IEEE Trans Biomed Eng 65(1):224–231

    Article  Google Scholar 

  • Narasaki T (1978) Layered type bimorph vibrator pump. In: Proceedings of the 13th intersociety energy conversion engineering conference, San Diego, pp 20–25

  • Oda Y, Oshima H, Nakatani M, Hashimoto M (2019) Vacuum-driven fluid manipulation by a piezoelectric diaphragm micropump for microfluidic droplet generation with a rapid system response time. Electrophoresis 40(3):414–418

    Article  Google Scholar 

  • Okura N et al (2017) A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms. Electrophoresis 38(20):2666–2672

    Article  Google Scholar 

  • Oldham JM et al (2014) A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system. J Chem Phys 141(15):154202

    Article  Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1997) Micromachined flat-walled valveless diffuser pumps. J Microelectromech Syst 6(2):161–166

    Article  Google Scholar 

  • Opekar F, Nesmerak K, Tuma P (2016) Electrokinetic injection of samples into a short electrophoretic capillary controlled by piezoelectric micropumps. Electrophoresis 37(4):595–600

    Article  Google Scholar 

  • Pabst O et al (2014) Inkjet printed micropump actuator based on piezoelectric polymers: device performance and morphology studies. Org Electron 15(11):3306–3315

    Article  Google Scholar 

  • Park JH, Seo MY, Ham YB, Yun SN, Kim DI (2012) A study on high-output piezoelectric micropumps for application in DMFC. J Electroceram 30(1–2):102–107

    Google Scholar 

  • Park JH, Seo MY, Ham YB, Yun SN, Kim DI (2013) A study on high-output piezoelectric micropumps for application in DMFC. J Electroceram 30(1–2):102–107

    Article  Google Scholar 

  • Pawela B, Jaszczur M (2022) Review of gas engine heat pumps. Energies 15(13):4874

    Article  Google Scholar 

  • Peng TJ et al (2019) A high-flow, self-filling piezoelectric pump driven by hybrid connected multiple chambers with umbrella-shaped valves. Sens Actuators B Chem 301:126961

    Article  Google Scholar 

  • Qian C, Chen S, Wang J, Kan J, Zhang Z, Yu M (2020) A piezoelectric hydraulic linear motor with velocity self-monitoring. Sens Actuators A Phys 306:111962

    Article  Google Scholar 

  • Quan ZY, Quan L, Zhang JM (2014) Review of energy efficient direct pump controlled cylinder electro-hydraulic technology. Renew Sustain Energy Rev 35:336–346

    Article  Google Scholar 

  • Rodionov L et al (2021) Challenges in design process of gear micropump from plastics. Arch Civil Mech Eng 21(1):34

    Article  MathSciNet  Google Scholar 

  • Rundo M (2017) Models for flow rate simulation in gear pumps: a review. Energies 10(9):1261

    Article  Google Scholar 

  • Sakuma S, Kasai Y, Hayakawa T, Arai F (2017) On-chip cell sorting by high-speed local-flow control using dual membrane pumps. Lab Chip 17(16):2760–2767

    Article  Google Scholar 

  • Saren A, Smith AR, Ullakko K (2018) Integratable magnetic shape memory micropump for high-pressure, precision microfluidic applications. Microfluid Nanofluid. https://doi.org/10.1007/s10404-018-2058-0

    Article  Google Scholar 

  • Sateesh J, Girija Sravani K, Akshay Kumar R, Guha K, Srinivasa Rao K (2017) Design and flow analysis of MEMS based piezo-electric micro pump. Microsyst Technol 24(3):1609–1614

    Article  Google Scholar 

  • Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, Basha DB (2022) A review on piezoelectric materials and their applications. Cryst Res Technol 58(2):2200130

    Article  Google Scholar 

  • Shen S-C, Wang Y-J, Chen Y-Y (2008) Design and fabrication of medical micro-nebulizer. Sens Actuators A Phys 144(1):135–143

    Article  Google Scholar 

  • Tang Y et al (2019a) Experimental investigation on thermal management performance of an integrated heat sink with a piezoelectric micropump. Appl Therm Eng 161:114053

    Article  Google Scholar 

  • Tang M et al (2019b) Design and experimental verification of a PZT pump with streamlined flow tubes. Appl Sci 9(18):3881

    Article  Google Scholar 

  • Tong ZM et al (2020) Energy-saving technologies for construction machinery: a review of electro-hydraulic pump-valve coordinated system. J Zhejiang Univ Sci A 21(5):331–349

    Article  Google Scholar 

  • Ude C, Hentrop T, Lindner P, Lücking TH, Scheper T, Beutel S (2015) New perspectives in shake flask pH control using a 3D-printed control unit based on pH online measurement. Sens Actuators B Chem 221:1035–1043

    Article  Google Scholar 

  • Ullmann A, Taitel Y (2015) The piezoelectric valve-less pump: series and parallel connections. J Fluids Eng Trans ASME 137(2):021104

    Article  Google Scholar 

  • Valdovinos J, Williams RJ, Levi DS, Carman GP (2013) Evaluating piezoelectric hydraulic pumps as drivers for pulsatile pediatric ventricular assist devices. J Intell Mater Syst Struct 25(10):1276–1285

    Article  Google Scholar 

  • Verma P, Chatterjee D, Nagarajan T (2009) Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling. Proc Inst Mech Eng C J Mech Eng Sci 223(4):953–963

    Article  Google Scholar 

  • Vo TVK, Lubecki TM, Chow WT, Gupta A, Li KHH (2021) Large-scale piezoelectric-based systems for more electric aircraft applications. Micromachines 12(2):140

    Article  Google Scholar 

  • Wang XY, Ma YT, Yan GY, Huang D, Feng ZH (2014) High flow-rate piezoelectric micropump with two fixed ends polydimethylsiloxane valves and compressible spaces. Sens Actuators A Phys 218:94–104

    Article  Google Scholar 

  • Wang X, Jiang H, Chen Y, Qiao X, Dong L (2017) Microblower-based microfluidic pump. Sens Actuators A Phys 253:27–34

    Article  Google Scholar 

  • Wang L et al (2019a) Experimental study and optimized design on electromagnetic pump for liquid sodium. Ann Nucl Energy 124:426–440

    Article  Google Scholar 

  • Wang D-H, Tang L-K, Peng Y-H, Yu H-Q (2019b) Principle and structure of a printed circuit board process–based piezoelectric microfluidic pump integrated into printed circuit board. J Intell Mater Syst Struct 30(17):2595–2604

    Article  Google Scholar 

  • Wu J, Gao X, Chen J, Wang C-M, Zhang S, Dong S (2018) Review of high temperature piezoelectric materials, devices, and applications. Acta Physica Sinica 67(20):207701

    Article  Google Scholar 

  • Wu X, He L, Hou Y, Tian X, Zhao X (2021) Advances in passive check valve piezoelectric pumps. Sens Actuators A Phys 323:112647

    Article  Google Scholar 

  • Xiang J, Cai Z, Zhang Y, Wang W (2016) A micro-cam actuated linear peristaltic pump for microfluidic applications. Sens Actuators A Phys 251:20–25

    Article  Google Scholar 

  • Yan Q, Sun W, Zhang J (2020) Study on the influencing factors of the atomization rate in a piezoceramic vibrating mesh atomizer. Appl Sci 10(7):2422

    Article  Google Scholar 

  • Yan QF, Yin YK, Sun WT, Fu J (2021) Advances in valveless piezoelectric pumps. Appl Sci 11(15):7061

    Article  Google Scholar 

  • Ye Y, Chen J, Ren YJ, Feng ZH (2018) Valve improvement for high flow rate piezoelectric pump with PDMS film valves. Sens Actuators A Phys 283:245–253

    Article  Google Scholar 

  • Yeming S, Junyao W (2018) Digitally-controlled driving power supply for dual-active-valve piezoelectric pump. Microsyst Technol 25(4):1257–1265

    Article  Google Scholar 

  • Yueh W, Wan Z, Xiao H, Yalamanchili S, Joshi Y, Mukhopadhyay S (2017) Active fluidic cooling on energy constrained system-on-chip systems. IEEE Trans Compon Packag Manufact Technol 7(11):1813–1822

    Article  Google Scholar 

  • Zaszczynska A, Gradys A, Sajkiewicz P (2020) Progress in the applications of smart piezoelectric materials for medical devices. Polymers 12(11):2754

    Article  Google Scholar 

  • Zeng Y et al (2021) Recent progress in 3D printing piezoelectric materials for biomedical applications. J Phys D Appl Phys 55(1):013002

    Article  Google Scholar 

  • Zhang T, Wang Q-M (2005) Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. J Power Sources 140(1):72–80

    Article  Google Scholar 

  • Zhang J, Leng X, Zhao C (2014) A spiral-tube-type valveless piezoelectric pump with gyroscopic effect. Chin Sci Bull 59(16):1885–1889

    Article  Google Scholar 

  • Zhang Z, Kan JW, Wang S, Wang H, Ma J, Jiang Y (2015) Development of a self-sensing piezoelectric pump with a bimorph transducer. J Intell Mater Syst Struct 27(5):581–591

    Article  Google Scholar 

  • Zhang RH, You F, Lv ZH, He ZC, Wang HW, Huang L (2016) Development and characterization a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Sensors 16(12):2108

    Article  Google Scholar 

  • Zhang JH, Wang Y, Huang J (2017) Advances in valveless piezoelectric pump with cone-shaped tubes. Chinese J Mech Eng 30(4):766–781

    Article  Google Scholar 

  • Zhang JH, Wang Y, Huang J (2018) Equivalent circuit modeling for a valveless piezoelectric pump. Sensors 18(9):2881

    Article  Google Scholar 

  • Zhang YL, Li DZ, Chen Y, Zhang B (2020) Design of micro-displacement amplifier for the micro-channel cooling system in the micro-pump. Forschung Im Ingenieurwesen-Engineering Research 84(2):161–168

    Article  Google Scholar 

  • Zhao B, Cui X, Ren W, Xu F, Liu M, Ye ZG (2017) A controllable and integrated pump-enabled microfluidic chip and its application in droplets generating. Sci Rep 7(1):11319

    Article  Google Scholar 

  • Zheng X, He L, Wang S, Liu X, Liu R, Cheng G (2023) A review of piezoelectric energy harvesters for harvesting wind energy. Sens Actuators A Phys 352:114190

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Education Department of Jilin Province (JJKH20220678KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipeng He.

Ethics declarations

Conflict of interest

We declare that we have no known conflicts of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., He, L., Hu, D. et al. Recent studies on the application of piezoelectric pump in different fields. Microsyst Technol 29, 663–682 (2023). https://doi.org/10.1007/s00542-023-05453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-023-05453-6

Navigation