Skip to main content
Log in

Design of micro-displacement amplifier for the micro-channel cooling system in the micro-pump

Design eines Mikro-Verschiebungsverstärkers für das Mikrokanal-Kühlungssystem

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

With the characteristic of small size, lightweight, low energy dissipation, the laminated piezoelectric is suitable for micro-electromechanical system, which still needs an external amplification mechanism because of its low output displacement. As for the application of the micro-channel cooling system in the micro-pump, the leveraged mechanism, the bridge mechanism and the hydraulic mechanism have been proceed numerical modeling, dynamic simulation and optimizing in this paper. In this study, the amplifier is designed within the volume of 15 mm × 15 mm × 5 mm. The volume of the leveraged mechanism, the bridge mechanism and the hydraulic mechanism are 345 mm3, 1125 mm3 and 240.21 mm3 respectively. Moreover, the best magnification and frequency for the above three magnifying mechanisms are 134.8 and 69.4 Hz, 61.52 and 5.26 kHz, 50.6 and 6.94 kHz respectively. The performance of a micro-pump is a combination of the output quantity per time and the output frequency. Compared to other two magnifying mechanisms, the hydraulic mechanism is smaller, more stable and faster in response. Taking into consideration all these above factors, the hydraulic mechanism is more suitable for the micro-pump used in a micro-channel cooling system. The hydraulic micro-displacement amplifying mechanism also can be used in developing tools for other fields such as medicine, chemistry and so on.

Zusammenfassung

Aufgrund seines kleinen Volumens, niedrigen Gewichts und die Besonderheit von wenigen Energieverbrauch hat der Piezostapel an Bedeutung für das mikroelektromechanische System gewonnen. Allerdings wird ein externes Verstärkungssystem wegen der geringen Ausgangsverschiebung benötigt. In diesem Artikel wird der Fokus auf der Anwendung des Mikrokanal-Kühlungssystems in der Mikropumpe gelegt. Hierbei werden drei weitverbreitete Micro-Verstärkungssysteme, nämlich der Hebelmechanismus, der Brückenmechanismus und der Hydraulikmechanismus numerisch modelliert, dynamisch simuliert und optimiert. In dieser Studie ist der Verstärker mit einem Volumen von 15 mm × 15 mm × 5 mm ausgelegt. Das Volumen von Hebelmechanismus, Brückenmechanismus und Hydraulikmechanismus beträgt jeweils 345 mm3, 1125 mm3 und 240,21 mm3. Die beste Vergrößerung und Frequenz von obengenannter drei Mechanismen sind jeweils 134,8 und 69,4 Hz, 61,52 und 5,26 kHz, 50,6 und 6,94 kHz. Die Leistung einer Mikropumpe ist abhängig von der einmaligen Ausgangsmenge und der Ausgangsfrequenz. Zusammenfassend ist der Hydraulikmechanismus mit kleinerem Volumen, bessere Sensibilität und gute Stabilität gegenüber den zwei anderen Mechanismen optimaler. Darüber hinaus wird er in den Bereichen wie Medizin und Chemie eingesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lin L, Chen YY, Zhang XX et al (2014) Optimization of geometry and flow rate distribution for double-layer microchannel heat sink. Int J Therm Sci 78:158–168. https://doi.org/10.1016/j.ijthermalsci.2013.12.009

    Article  Google Scholar 

  2. Kleiner MB, Kuhn SA, Haberger K (1995) High performance forced air cooling scheme employing microchannel heat exchangers. IEEE Trans Compon Packag Manuf Technol Part A 18(4):795–804. https://doi.org/10.1109/95.477466

    Article  Google Scholar 

  3. Li QL, Chen LX (2008) Delivery and control techniques for micro-fluids. Prog Chem 20(9):1406–1415

    Google Scholar 

  4. Huang J, Zhang J, Shi W et al (2016) 3D FEM analyses on flow field characteristics of the valveless piezoelectric pump. Chin J Mech Eng 29(4):825–831. https://doi.org/10.3901/CJME.2016.0427.061

    Article  Google Scholar 

  5. Galas JC, Studer V, Chen Y (2005) Characterization of pneumatically activated microvalves by measuring electrical conductance. Microelectron Eng 79(2):112–117. https://doi.org/10.1016/j.mee.2004.12.016

    Article  Google Scholar 

  6. Maronn M, Chamlin S, Metry D (2005) A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon. Sens Actuators A 119(2):468–475. https://doi.org/10.1016/j.sna.2004.10.023

    Article  Google Scholar 

  7. Yang Y, Liu J (2009) Flexibly driving micro flow in a Lab-on-Chip system via dry porous structure. Forsch Ingenieurwes 73(4):219–229. https://doi.org/10.1007/s10010-009-0107-2

    Article  Google Scholar 

  8. Luharuka R, Leblanc S, Bintoro JS et al (2008) Simulated and experimental dynamic response characterization of an electromagnetic microvalve. Sens Actuators A 143(2):399–408. https://doi.org/10.1016/j.sna.2007.10.084

    Article  Google Scholar 

  9. Ashouri M, Behshad Shafii M, Moosavi A (2017) Theoretical and experimental studies of a magnetically actuated valveless micropump. J Micromech Microeng 27(1):15016. https://doi.org/10.1088/0960-1317/27/1/015016

    Article  Google Scholar 

  10. Hamid NA, Majlis BY, Yunas J et al (2016) A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications. Microsyst Technol. https://doi.org/10.1007/s00542-016-2951-y

    Article  Google Scholar 

  11. Yoshida T, Tachiki A, Ishii N et al (2014) 4He crystals on an oscillating plate. J Low Temp Phys 175(1/2):120–125. https://doi.org/10.1007/s10909-013-0929-z

    Article  Google Scholar 

  12. Oh CH, Choi JH, Nam HJ et al (2010) Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor. Sens Actuators A 158(2):306–312. https://doi.org/10.1016/j.sna.2010.01.022

    Article  Google Scholar 

  13. Ling MX, Liu Q (2016) Analytical model and finite element analysis of piezoelectric displacement amplification mechanism. Opt Precis Eng 24(4):812–818. https://doi.org/10.3788/OPE.20162404.0812

    Article  Google Scholar 

  14. Bae GH, Hong SW, Lee DW (2014) A study on precision stage with displacement magnification mechanism using flexure-based levers. Res J Appl Sci Eng Technol 7(11):2225–2231. https://doi.org/10.19026/rjaset.7.520

    Article  Google Scholar 

  15. Lobontiu N, Garcia E (2003) Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput Struct 81(32):2797–2810. https://doi.org/10.1016/j.compstruc.2003.07.003

    Article  Google Scholar 

  16. Ninomiya T, Okayama Y, Matsumoto Y et al (2011) MEMS-based hydraulic displacement amplification mechanism with completely encapsulated liquid. Sens Actuators A 166(2):277–282. https://doi.org/10.1016/j.sna.2009.07.002

    Article  Google Scholar 

  17. Zhang JL, Chen WY et al (2009) Design and simulation of a kind of micro-displacement amplification mechanism. J Mach Des 26(12):9–12

    Google Scholar 

  18. Chen G, Shao X, Huang X (2008) A new generalized model for elliptical arc flexure hinges. Rev Sci Instrum 79(9):95103. https://doi.org/10.1063/1.2976756

    Article  Google Scholar 

  19. Wang H, Yu W, Chen G (2017) An approach of topology optimization of multi-rigid-body mechanism. Comput Aided Des 84:39–55. https://doi.org/10.1016/j.cad.2016.12.002

    Article  Google Scholar 

  20. Schomburg WK (2011) Introduction to microsystem design. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, D., Chen, Y. et al. Design of micro-displacement amplifier for the micro-channel cooling system in the micro-pump. Forsch Ingenieurwes 84, 161–168 (2020). https://doi.org/10.1007/s10010-020-00394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-020-00394-2

Navigation