Skip to main content
Log in

Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Dykes in the Strudengau area (SW Moldanubian Zone, Austria) can be mineralogically divided into lamprophyres (spessartites and kersantites) and felsic dykes (granite porphyries, granitic dykes and pegmatoid dykes). Geochemical analyses of 11 lamprophyres and 7 felsic dykes show evidence of fractional crystallization. The lamprophyres are characterized by metaluminous compositions, intermediate SiO2 contents and high amounts of MgO and K2O; these rocks have high Ba (800–3000 ppm) and Sr (250–1000 ppm) contents as well as an enrichment of large-ion lithophile elements over high field strength elements, typical for enriched mantle sources with variable modifications due to fractionation and crustal contamination. This geochemical signature has been reported from durbachites (biotite- and K feldspar-rich mela-syenites particularly characteristic of the Variscan orogen in Central Europe). For most major elements, calculated fractionation trends from crystallization experiments of durbachites give an excellent match with the data from the Strudengau dykes. This suggests that the lamprophyres and felsic dykes were both products of fractional crystallization and subsequent magma mixing of durbachitic and leucogranitic melts. Rb–Sr geochronological data on biotite from five undeformed kersantites and a locally deformed granite porphyry gave cooling ages of c. 334–318 Ma, indicating synchronous intrusion of the dykes with the nearby outcropping Weinsberger granite (part of the South Bohemian Batholith, c. 330–310 Ma). Oriented matrix biotite separated from the locally deformed granite porphyry gave an Rb–Sr age of c. 318 Ma, interpreted as a deformation age during extensional tectonics. We propose a large-scale extensional regime at c. 320 Ma in the Strudengau area, accompanied by plutonism of fractionated magmas of syncollisional mantle-derived sources, mixed with crustal components. This geodynamic setting is comparable to other areas in the Variscan belt documenting an orogenic wide extension by the end of the Carboniferous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Breiter K, Koller F (2009) Mafic K- and Mg-rich magmatic rocks from Western Mühlviertel (Austria) area and the adjacent part of the Šumava Mountains (Czech Republic). Jb Geol BA 149(4):477–485

    Google Scholar 

  • Burg JP, Van den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol de la France 3:33–51

    Google Scholar 

  • Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the southeastern margin of the Bohemian Massif. Geol Rundsch 86:21–38

    Article  Google Scholar 

  • Cagnard F, Gapais D, Brun JP, Gumiaux C, Van den Driessche J (2003) Late pervasive crustal-scale extension in the south Armorican Hercynian belt (Vendée, France). J of Struc Geol 26:435–449

    Article  Google Scholar 

  • Carmichael ISE, Lange RA, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 124:302–333

    Article  Google Scholar 

  • Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153

    Article  Google Scholar 

  • Dallmeyer RD, Franke W, Weber K (1995) Pre-permian geology of central and Eastern Europe. Springer, Berlin

    Book  Google Scholar 

  • Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325

    Article  Google Scholar 

  • Edel JB, Schulman K, Skrzypek E, Cocherie A (2013) Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the Northern Vosges magmatic arc (eastern France). J Geol Soc 170:785–804

    Article  Google Scholar 

  • Faure M (1995) Late orogenic carboniferous extension in the Variscan French Massif Central. Tectonics 14(1):132–153

    Article  Google Scholar 

  • Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy of the Moldanubian zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and Eastern Europe. Springer, Berlin, pp 417–428

  • Finger F, Gerdes A, Janousek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28

    Google Scholar 

  • Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in teh Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90

    Google Scholar 

  • Fritz H, Neubauer F (1993) Kinematics of crustal stacking and dispersion in the south-eastern Bohemian Massif. Geol Rundsch 82:556–565

    Article  Google Scholar 

  • Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol BA 45–61

  • Fuchs G (2005) Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederösterreich). Jb Geol BA 145(3+4):283–291

    Google Scholar 

  • Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc Lond 157:577–587

    Article  Google Scholar 

  • Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemis-try and petrogenetic interpretation. J Geol Sci Econ Geol Mineral 31:5–26

    Google Scholar 

  • Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. Compte Rendu, Académie des Sci Earth Planet 325:19–26

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:227–279

    Google Scholar 

  • Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142

    Article  Google Scholar 

  • Ludwig KR (2003) User's manual for Isoplot 3.00. Berkeley Geochronology Center Special Publication, Berkeley, p 74

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Neubauer F, Dallmeyer D, Fritz H (2003) Chronological constraints of late- and post-orogenic emplacement of lamprophyre dykes in the southeastern Bohemian Massif, Austria. Schweiz Mineral Petrogr Mitt 83:317–330

    Google Scholar 

  • Parat F, Holtz F, René M, Almeev R (2010) Experimental constraints on ultrapotassic magmazism from the Bohemian Massif (durbachite series, Czech Republic). Contrib Mineral Petrol 159:331–347

    Article  Google Scholar 

  • Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222

    Article  Google Scholar 

  • Prelević D, Foley SF, Cvetkovic V, Romer RL (2004) Origin of Minette by mixing of Lamproite and dacite magmas in Veliki Majdan, Serbia. J Petrol 45(5):759–792

    Article  Google Scholar 

  • Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks. Contrib Mineral Petrol 123:1–21

    Article  Google Scholar 

  • Rock NMS (1991) Lamprophyres. Blackie, Glasgow, p 285

    Book  Google Scholar 

  • Rollinson HR (2003) Using geochemical data: evaluation presentation and interpretation. Pearson Prentice Hall, Harlow, pp 1–352

    Google Scholar 

  • Sauer A (1893) Der Granitit von Durbach im nördlichen Schwarzwald und seine Grenz-Facies von Glimmersyenit (Durbachit). Mitt Bad Geol Landesanst 2:231–276

    Google Scholar 

  • Schaltegger U (2000) U±Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828

    Article  Google Scholar 

  • Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian massif. C R Geosci Paris 341:266–286

    Article  Google Scholar 

  • Schulmann K, Lexa O, Janoušek V, Lardaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278. doi:10.1130/G35290.1

    Article  Google Scholar 

  • Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides. IOS Press Millpress, Amsterdam, pp 1–303

    Google Scholar 

  • Shand SJ (1927) Eruptive rocks: their genesis, composition, classification and their relation to ore-deposits. Murby, London, p 360

  • Siebel W, Hann HP, Shang CK, Rohrmüller J, Chen F (2006) Coeval late-Variscan emplacement of granitic rocks: an example from the Regensburg Forest NE Bavaria. N Jb Miner Abh. doi:10.1127/007-7757/2006/0058

    Google Scholar 

  • Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana-derived terranes in the early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero, vol 14, Instituto Geológico y Minero de España, Madrid, pp 567–574

  • Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The geodynamics of Pangea formation. Tectonophysics 593:1–19

    Article  Google Scholar 

  • Štemprok M, Seifert T, Holub FV, Chlupáčová M, Dolejš D, Novák JK, Pivec E, Lang M (2008) Petrology and geochemistry of Variscan dykes from the Jáchymov (Joachimsthal) ore district, Czech Republic. J Geosci 53:65–104

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Pub 42:313–345

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Frontiers in Earth Sci, Blackwell, Cambridge, p 211

    Google Scholar 

  • Thöni M, Miller C, Blichert-Toft J, Whitehouse MJ, Konzett J, Zanetti A (2008) Timing of high-pressure metamorphism and exhumation of the eclogite type-locality (Kupplerbrunn–Prickler Halt, Saualpe, south-eastern Austria): constraints from correlations of the Sm–Nd, Lu–Hf, U–Pb and Rb–Sr isotopic systems. J Metamorph Geol 26:561–581

    Article  Google Scholar 

  • Turrillot P, Faure M, Martelet G, Chen Y, Augier R (2011) Pluton-dyke relationships in a Variscan granitic complex from AMS and gravity modelling. Inception of the extensional tectonics in the South Armorican Domain (France). J Struct Geol 33:1681–1698

    Article  Google Scholar 

  • Vanderhaeghe O, Duchêne S (2010) Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries. Terra Nova 22(5):315–323

    Article  Google Scholar 

  • von Raumer JF, Janoušek V, Stampfli GM (2012) Durbachites-Vaugnerites—a time-marker across the European Variscan basement. Géol France 2012–1:178–180

    Google Scholar 

  • von Raumer JF, Schaltegger U, Schulz B, Stampfli GM (2013) CGM02—an improved earth gravity field model from grace. GSA Bull 125(1/2):89–108. doi:10.1130/B30654.1

    Article  Google Scholar 

  • von Raumer JF, Finger F, Veselá P, Stampfli GM (2014) Durbachites-Vaugnerites—a geodynamic marker in the central European Variscan orogen. Terra Nova 26:85–95

    Article  Google Scholar 

  • von Seckendorff V, Timmermann MJ, Kramer W, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of Late Carboniferous–early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan orogen, Germany. In: Wilson M, Neumann EG, Davies GR, Timmermann MJ, Heeremans M, Larsen BT (eds) Permo–Carboniferous magmatism and rifting in Europe. Geol Soc Lond Spec Publ 223:335–359

  • Werner O, Lippolt JH (1998) Datierung von postkinematischen magmatischen Intrusionsphasen des Erzgebirges: Thermische und hydrothermale Überprägung der Nebengesteine. Terra Nostra 98(2):160–163

    Google Scholar 

  • Wilson M, Tankut A, Gulec N (1997) Tertiary volcanism of the Galatia province, north-west central Anatolia, Turkey. Lithos 42:105–121

    Article  Google Scholar 

  • Žák K, Vlašímský P, Snee LW (1998) Datování vybraných hornin příbramské rudnií oblasti metodou Ar/Ar a otázka stáří polymetalické hydrotermální mineralizace. Zpr geol Výzk v R 1997:172–173

    Google Scholar 

  • Zeitlhofer H, Schneider D, Grasemann B, Konstantin P, Thöni M (2013) Polyphase tectonics and late Variscan extension in Austria (Moldanubian Zone, Strudengau area). Int J Earth Sci 103:83–102

    Article  Google Scholar 

  • Žeravíková P (2014) Mikrochemismus Apatitu Z°Durbachitu Třebíčského Masivu. MA thesis, Univerzita Palackého v Olomouci

  • Ziegler PA (1986) Geodynamic model for the Palaeozoic crustal consolidation of western and central Europe. Tectonophysics 126:303–328

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrea Mundl, Hugh Rice and Theodoros Ntaflos for stimulating discussions and coffee. In particular, Hugh Rice for the linguistic review, Monika Horschinegg and Martin Thöni for Rb–Sr analytical work and Claudia Beybel and Sigrid Hrabe for excellent thin-section preparation are grateful acknowledged. We thank Fritz Finger and Gernold Zulauf for constructive reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Zeitlhofer.

Appendix

Appendix

Methods

Whole-rock geochemistry

Major-element and trace-element whole-rock analyses were performed at the ACME Analytical Laboratories, Vancouver, Canada. Major oxides were analyzed by pressed pellet XRF, and trace elements were determined by ICP-MS. Details about the analytical methods can be found at acmelab.com.

Mineral chemical analyses

Mineral compositions were obtained on carbon-coated polished thin sections with a Cameca SX-100 EPMA (electron-probe microanalyzer, Department of Lithospheric Research, University of Vienna, Austria) equipped with energy and wavelength-dispersive spectrometers. All measurements were performed against natural standards using an acceleration voltage of 15 kV as well as a beam current of 20 nA. Feldspar and amphibole were performed using a defocused beam (5 µm feldspar, 3 µm amphibole), while garnet and micas were performed by a focused beam.

Methodology applied for Rb–Sr TIMS isotope analysis

The Rb–Sr analytical work was performed at the Laboratory of Geochronology, Department of Lithospheric Research, Center for Earth Sciences, University of Vienna. Results are based on ID-TIMS analytical procedure. Details of technique and data precision are given by Thöni et al. (2008).

Sample preparation/separation

Pure mica (biotite) separates for Rb–Sr analysis were prepared from the bulk crushates by sieving, magnetic concentration (using splits of the 0.16–0.45 mm grain size = sieve fraction for kersantite samples, 0.02–0.12 mm and 0.2–1.6 mm grain size for the granite porphyry sample), repeated grinding in an agate mill (using alcohol), sieving, drying and, finally, careful magnetic purification.

Pure mineral separates used for Rb–Sr analysis weighed between 150 and (maximum) 200 mg. For whole-rock analyses, c. 50–(maximum) 200 mg of ultrafine, well-homogenized sample powder was used.

Sample digestion, element separation and isotope dilution (ID)

Sample dissolution for Rb–Sr analysis was performed in Savillex® beakers using HF/HNO3 (4:1), and element separation followed conventional procedures. Samples were spiked in solid form, using a highly concentrated mixed 87Rb-84Sr tracer, and subsequently dissolved in ultrapure HF-HNO3 (4:1). Element separation followed conventional techniques, using AG® 50W-X8 (200–400 mesh, Bio-Rad) resin and 2.5 and 1.0 N HCl as eluants. Maximum total procedural blanks were <500 pg for both Sr and Rb and were taken as negligible in all cases.

Mass spectrometry and data processing/evaluation

Sr was loaded on and evaporated from a Re double filament assembly, using a ThermoFinnigan® Triton TI TIMS, while Rb fractions were loaded on Ta single filaments using H3PO4 and run on a Finnigan® MAT262 mass spectrometer. A 87Sr/86Sr ratio of 0.710241 ± 0.000002 (n = 18) was determined for the NBS987 Sr international standard during the period of investigation. Within-run mass fractionation for Sr isotopes was corrected for relative to 86Sr/88Sr = 0.1194. Uncertainties on the Sr isotope ratios (IC) are quoted as 2σ m. For the 87Rb/86Sr ratio, a mean error of ±1 % is applied, including blank contribution, uncertainties on spike composition and machine drift; regression calculation is based on these uncertainties and the isochron calculations follow Ludwig (2003; isoplot). Age calculations are based on a decay constant of 1.393 × 10−11 a−1 for 87Rb; age errors are given at the 2σ level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeitlhofer, H., Grasemann, B. & Petrakakis, K. Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria). Int J Earth Sci (Geol Rundsch) 105, 1175–1197 (2016). https://doi.org/10.1007/s00531-015-1238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1238-3

Keywords

Navigation