International Journal of Earth Sciences

, Volume 105, Issue 4, pp 1175–1197 | Cite as

Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria)

  • Helga Zeitlhofer
  • Bernhard Grasemann
  • Konstantin Petrakakis
Original Paper

Abstract

Dykes in the Strudengau area (SW Moldanubian Zone, Austria) can be mineralogically divided into lamprophyres (spessartites and kersantites) and felsic dykes (granite porphyries, granitic dykes and pegmatoid dykes). Geochemical analyses of 11 lamprophyres and 7 felsic dykes show evidence of fractional crystallization. The lamprophyres are characterized by metaluminous compositions, intermediate SiO2 contents and high amounts of MgO and K2O; these rocks have high Ba (800–3000 ppm) and Sr (250–1000 ppm) contents as well as an enrichment of large-ion lithophile elements over high field strength elements, typical for enriched mantle sources with variable modifications due to fractionation and crustal contamination. This geochemical signature has been reported from durbachites (biotite- and K feldspar-rich mela-syenites particularly characteristic of the Variscan orogen in Central Europe). For most major elements, calculated fractionation trends from crystallization experiments of durbachites give an excellent match with the data from the Strudengau dykes. This suggests that the lamprophyres and felsic dykes were both products of fractional crystallization and subsequent magma mixing of durbachitic and leucogranitic melts. Rb–Sr geochronological data on biotite from five undeformed kersantites and a locally deformed granite porphyry gave cooling ages of c. 334–318 Ma, indicating synchronous intrusion of the dykes with the nearby outcropping Weinsberger granite (part of the South Bohemian Batholith, c. 330–310 Ma). Oriented matrix biotite separated from the locally deformed granite porphyry gave an Rb–Sr age of c. 318 Ma, interpreted as a deformation age during extensional tectonics. We propose a large-scale extensional regime at c. 320 Ma in the Strudengau area, accompanied by plutonism of fractionated magmas of syncollisional mantle-derived sources, mixed with crustal components. This geodynamic setting is comparable to other areas in the Variscan belt documenting an orogenic wide extension by the end of the Carboniferous.

Keywords

Late-Variscan extension Orogenic collapse Bohemian Massif Moldanubian dykes Durbachites Variscan plutonism 

References

  1. Breiter K, Koller F (2009) Mafic K- and Mg-rich magmatic rocks from Western Mühlviertel (Austria) area and the adjacent part of the Šumava Mountains (Czech Republic). Jb Geol BA 149(4):477–485Google Scholar
  2. Burg JP, Van den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol de la France 3:33–51Google Scholar
  3. Büttner S, Kruhl JH (1997) The evolution of a late-Variscan high-T/low-P region: the southeastern margin of the Bohemian Massif. Geol Rundsch 86:21–38CrossRefGoogle Scholar
  4. Cagnard F, Gapais D, Brun JP, Gumiaux C, Van den Driessche J (2003) Late pervasive crustal-scale extension in the south Armorican Hercynian belt (Vendée, France). J of Struc Geol 26:435–449CrossRefGoogle Scholar
  5. Carmichael ISE, Lange RA, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 124:302–333CrossRefGoogle Scholar
  6. Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo-Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153CrossRefGoogle Scholar
  7. Dallmeyer RD, Franke W, Weber K (1995) Pre-permian geology of central and Eastern Europe. Springer, BerlinCrossRefGoogle Scholar
  8. Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325CrossRefGoogle Scholar
  9. Edel JB, Schulman K, Skrzypek E, Cocherie A (2013) Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the Northern Vosges magmatic arc (eastern France). J Geol Soc 170:785–804CrossRefGoogle Scholar
  10. Faure M (1995) Late orogenic carboniferous extension in the Variscan French Massif Central. Tectonics 14(1):132–153CrossRefGoogle Scholar
  11. Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy of the Moldanubian zone. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and Eastern Europe. Springer, Berlin, pp 417–428Google Scholar
  12. Finger F, Gerdes A, Janousek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28Google Scholar
  13. Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in teh Variscan Erzgebirge, Germany. J Petrol 40:1613–1645CrossRefGoogle Scholar
  14. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90Google Scholar
  15. Fritz H, Neubauer F (1993) Kinematics of crustal stacking and dispersion in the south-eastern Bohemian Massif. Geol Rundsch 82:556–565CrossRefGoogle Scholar
  16. Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol BA 45–61Google Scholar
  17. Fuchs G (2005) Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederösterreich). Jb Geol BA 145(3+4):283–291Google Scholar
  18. Gerdes A, Wörner G, Henk A (2000) Post-collisional granite generation and HT-HP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith. J Geol Soc Lond 157:577–587CrossRefGoogle Scholar
  19. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemis-try and petrogenetic interpretation. J Geol Sci Econ Geol Mineral 31:5–26Google Scholar
  20. Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. Compte Rendu, Académie des Sci Earth Planet 325:19–26Google Scholar
  21. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:227–279Google Scholar
  22. Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142CrossRefGoogle Scholar
  23. Ludwig KR (2003) User's manual for Isoplot 3.00. Berkeley Geochronology Center Special Publication, Berkeley, p 74Google Scholar
  24. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  25. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  26. Neubauer F, Dallmeyer D, Fritz H (2003) Chronological constraints of late- and post-orogenic emplacement of lamprophyre dykes in the southeastern Bohemian Massif, Austria. Schweiz Mineral Petrogr Mitt 83:317–330Google Scholar
  27. Parat F, Holtz F, René M, Almeev R (2010) Experimental constraints on ultrapotassic magmazism from the Bohemian Massif (durbachite series, Czech Republic). Contrib Mineral Petrol 159:331–347CrossRefGoogle Scholar
  28. Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222CrossRefGoogle Scholar
  29. Prelević D, Foley SF, Cvetkovic V, Romer RL (2004) Origin of Minette by mixing of Lamproite and dacite magmas in Veliki Majdan, Serbia. J Petrol 45(5):759–792CrossRefGoogle Scholar
  30. Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T estimates for biotite-bearing igneous rocks. Contrib Mineral Petrol 123:1–21CrossRefGoogle Scholar
  31. Rock NMS (1991) Lamprophyres. Blackie, Glasgow, p 285CrossRefGoogle Scholar
  32. Rollinson HR (2003) Using geochemical data: evaluation presentation and interpretation. Pearson Prentice Hall, Harlow, pp 1–352Google Scholar
  33. Sauer A (1893) Der Granitit von Durbach im nördlichen Schwarzwald und seine Grenz-Facies von Glimmersyenit (Durbachit). Mitt Bad Geol Landesanst 2:231–276Google Scholar
  34. Schaltegger U (2000) U±Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828CrossRefGoogle Scholar
  35. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448CrossRefGoogle Scholar
  36. Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian massif. C R Geosci Paris 341:266–286CrossRefGoogle Scholar
  37. Schulmann K, Lexa O, Janoušek V, Lardaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: an example from the Bohemian Massif, European Variscides. Geology 42:275–278. doi:10.1130/G35290.1 CrossRefGoogle Scholar
  38. Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides. IOS Press Millpress, Amsterdam, pp 1–303Google Scholar
  39. Shand SJ (1927) Eruptive rocks: their genesis, composition, classification and their relation to ore-deposits. Murby, London, p 360Google Scholar
  40. Siebel W, Hann HP, Shang CK, Rohrmüller J, Chen F (2006) Coeval late-Variscan emplacement of granitic rocks: an example from the Regensburg Forest NE Bavaria. N Jb Miner Abh. doi:10.1127/007-7757/2006/0058 Google Scholar
  41. Stampfli GM, von Raumer J, Wilhem C (2011) The distribution of Gondwana-derived terranes in the early Paleozoic. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the World. Cuadernos del Museo Geominero, vol 14, Instituto Geológico y Minero de España, Madrid, pp 567–574Google Scholar
  42. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The geodynamics of Pangea formation. Tectonophysics 593:1–19CrossRefGoogle Scholar
  43. Štemprok M, Seifert T, Holub FV, Chlupáčová M, Dolejš D, Novák JK, Pivec E, Lang M (2008) Petrology and geochemistry of Variscan dykes from the Jáchymov (Joachimsthal) ore district, Czech Republic. J Geosci 53:65–104Google Scholar
  44. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Lond Spec Pub 42:313–345Google Scholar
  45. Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Frontiers in Earth Sci, Blackwell, Cambridge, p 211Google Scholar
  46. Thöni M, Miller C, Blichert-Toft J, Whitehouse MJ, Konzett J, Zanetti A (2008) Timing of high-pressure metamorphism and exhumation of the eclogite type-locality (Kupplerbrunn–Prickler Halt, Saualpe, south-eastern Austria): constraints from correlations of the Sm–Nd, Lu–Hf, U–Pb and Rb–Sr isotopic systems. J Metamorph Geol 26:561–581CrossRefGoogle Scholar
  47. Turrillot P, Faure M, Martelet G, Chen Y, Augier R (2011) Pluton-dyke relationships in a Variscan granitic complex from AMS and gravity modelling. Inception of the extensional tectonics in the South Armorican Domain (France). J Struct Geol 33:1681–1698CrossRefGoogle Scholar
  48. Vanderhaeghe O, Duchêne S (2010) Crustal-scale mass transfer, geotherm and topography at convergent plate boundaries. Terra Nova 22(5):315–323CrossRefGoogle Scholar
  49. von Raumer JF, Janoušek V, Stampfli GM (2012) Durbachites-Vaugnerites—a time-marker across the European Variscan basement. Géol France 2012–1:178–180Google Scholar
  50. von Raumer JF, Schaltegger U, Schulz B, Stampfli GM (2013) CGM02—an improved earth gravity field model from grace. GSA Bull 125(1/2):89–108. doi:10.1130/B30654.1 CrossRefGoogle Scholar
  51. von Raumer JF, Finger F, Veselá P, Stampfli GM (2014) Durbachites-Vaugnerites—a geodynamic marker in the central European Variscan orogen. Terra Nova 26:85–95CrossRefGoogle Scholar
  52. von Seckendorff V, Timmermann MJ, Kramer W, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of Late Carboniferous–early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan orogen, Germany. In: Wilson M, Neumann EG, Davies GR, Timmermann MJ, Heeremans M, Larsen BT (eds) Permo–Carboniferous magmatism and rifting in Europe. Geol Soc Lond Spec Publ 223:335–359Google Scholar
  53. Werner O, Lippolt JH (1998) Datierung von postkinematischen magmatischen Intrusionsphasen des Erzgebirges: Thermische und hydrothermale Überprägung der Nebengesteine. Terra Nostra 98(2):160–163Google Scholar
  54. Wilson M, Tankut A, Gulec N (1997) Tertiary volcanism of the Galatia province, north-west central Anatolia, Turkey. Lithos 42:105–121CrossRefGoogle Scholar
  55. Žák K, Vlašímský P, Snee LW (1998) Datování vybraných hornin příbramské rudnií oblasti metodou Ar/Ar a otázka stáří polymetalické hydrotermální mineralizace. Zpr geol Výzk v R 1997:172–173Google Scholar
  56. Zeitlhofer H, Schneider D, Grasemann B, Konstantin P, Thöni M (2013) Polyphase tectonics and late Variscan extension in Austria (Moldanubian Zone, Strudengau area). Int J Earth Sci 103:83–102CrossRefGoogle Scholar
  57. Žeravíková P (2014) Mikrochemismus Apatitu Z°Durbachitu Třebíčského Masivu. MA thesis, Univerzita Palackého v OlomouciGoogle Scholar
  58. Ziegler PA (1986) Geodynamic model for the Palaeozoic crustal consolidation of western and central Europe. Tectonophysics 126:303–328CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Helga Zeitlhofer
    • 1
  • Bernhard Grasemann
    • 1
  • Konstantin Petrakakis
    • 1
  1. 1.Department of Geodynamics and SedimentologyUniversity of ViennaViennaAustria

Personalised recommendations