Skip to main content
Log in

Permo-Carboniferous hypabyssal magmatism in northern Portugal: the case of the Lamas de Olo microgranite and lamprophyre dykes

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

During the final stages of the Variscan orogeny, several subvolcanic dykes intruded throughout NW and SW Europe. In northern Portugal, the microgranite and lamprophyre of the Lamas de Olo region constitute a local manifestation of this magmatic event. To understand their petrogenesis, field, petrographic, and bulk-rock geochemical studies were undertaken. The lamprophyre was also analyzed for the Rb–Sr, Sm–Nd, and zircon U–Pb systematics. Mineralogically, the microgranite resembles alkali-feldspar granites, while the lamprophyre is a minette. Geochemically, the felsic dyke was probably derived from an evolved crustal source, possibly uncontaminated by mantellic or young crustal influences. The results suggest that the source is similar to that of the most evolved facies of the Lamas de Olo pluton. Structurally, the emplacement of the microgranite was presumably controlled by the regional WSW–ENE fracture system. On the other hand, lamprophyre emplacement is related to the regional NNE–SSW system. Fractional crystallization is likely to have conditioned the petrogenesis of the mafic dyke while crustal contamination probably played only a minor role. Several trace element ratios suggest that the lamprophyre resulted from low-degree melting of an enriched mantle source located in the lithospheric mantle. Source enrichment was presumably caused by subduction-related materials and metasomatism triggered by carbonate-rich fluids. When compared to other late-Variscan lamprophyres, the Lamas de Olo mafic dyke shares more similarities with the calc-alkaline specimens of Western Europe. The present work corroborates previous studies concerning the hypothesis that late to post-Variscan lamprophyres may constitute a geodynamic pointer for a change in the tectonic regime.

Resumen

Durante las etapas finales de la orogenia Varisca, varios diques subvolcánicos intruyeron en amplios sectores del NW y SW de Europa. En el norte de Portugal, el microgranito y el lamprófido de la región de Lamas de Olo constituyen una manifestación local de este evento magmático. Para entender su petrogénesis, se realizaron estudios de campo, petrográficos y geoquímicos de estas rocas. También se analizó el lamprófido en cuanto a la sistemática Rb-Sr, Sm-Nd y U-Pb del circón. Mineralógicamente, el microgranito se asemeja a los granitos de feldespato alcalino, mientras que el lamprófido es una minetta. Desde el punto de vista geoquímico, el dique félsico procede probablemente de una fuente de corteza evolucionada, posiblemente no contaminada por influencias mantélicas o de corteza joven. Los resultados sugieren que la fuente es similar a la de las facies más evolucionadas del plutón de Lamas de Olo. Estructuralmente, el emplazamiento del microgranito fue presumiblemente controlado por el sistema de fracturas regional WSW-ENE. Por otro lado, el emplazamiento del lamprófido está relacionado con el sistema regional NNE-SSW. Es probable que la cristalización fraccionada haya condicionado la petrogénesis del dique máfico, mientras que la contaminación con materiales de la corteza terrestre probablemente sólo desempeñó un papel menor. Varias relaciones de elementos traza sugieren que el lamprófido fue el resultado de la fusión a bajo grado de una fuente de manto litosférico enriquecida. El enriquecimiento de la fuente fue presumiblemente causado por materiales relacionados con la subducción y el subsecuente metasomatismo desencadenado por fluidos ricos en carbonatos. En comparación con otros lamprófidos tardovariscos, el dique máfico de Lamas de Olo comparte más similitudes con los ejemplares calcoalcalinos de Europa occidental. El presente trabajo corrobora los estudios anteriores relativos a la hipótesis de que los lamprófidos tardi-post-variscos pueden constituir un indicador geodinámico de un cambio de régimen tectónico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Alici Şen, P., Temel, A., & Gourgaud, A. (2004). Petrogenetic modelling of Quaternary post-collisional volcanism: A case study of central and eastern Anatolia. Geological Magazine, 141(1), 81–98. https://doi.org/10.1017/S0016756803008550

    Article  Google Scholar 

  • Allègre, C. J., & Minster, J. F. (1978). Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters, 38(1), 1–25. https://doi.org/10.1016/0012-821X(78)90123-1

    Article  Google Scholar 

  • Almeida, A., Leterrier, J., Noronha, F., & Bertrand, J. M. (1998). U–Pb zircon and monazite geochronology of the Hercynian two-mica granite composite pluton of Cabeceiras de Basto (Northern Portugal). Comptes Rendus De L’academie Des Sciences, Serie II, Fascicule a, Earth and Planetary Sciences, 326(11), 779–785. https://doi.org/10.1016/s1251-8050(98)80243-7

    Article  Google Scholar 

  • Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartese, R., & Vigneresse, J. L. (2016). Nb–Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44(3), 231–234. https://doi.org/10.1130/G37475.1

    Article  Google Scholar 

  • Batchelor, R. A., & Bowden, P. (1985). Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1–4), 43–55. https://doi.org/10.1016/0009-2541(85)90034-8

    Article  Google Scholar 

  • Bayat, F., & Torabi, G. (2011). Alkaline lamprophyric province of Central Iran. Island Arc, 20, 386–400. https://doi.org/10.1111/j.1440-1738.2011.00776.x

    Article  Google Scholar 

  • Bea, F., Fershtater, G., & Corretgé, L. G. (1992). The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos, 29(1–2), 43–56. https://doi.org/10.1016/0024-4937(92)90033-U

    Article  Google Scholar 

  • Bea, F., Gallastegui, G., Montero, P., Molina, J. F., Scarrow, J., Cuesta, A., & González-Menéndez, L. (2021). Contrasting high-Mg, high-K rocks in Central Iberia: The appinite-vaugnerite conundrum and their (non-existent) relation with arc magmatism. Journal of Iberian Geology, 47(1), 235–261. https://doi.org/10.1007/s41513-020-00152-x

    Article  Google Scholar 

  • Bea, F., Montero, P., & Molina, J. F. (1999). Mafic precursors, peraluminous granitoids, and late lamprophyres in the avila batholith: A model for the generation of variscan batholiths in Iberia. The Journal of Geology, 107(4), 399–419. https://doi.org/10.1086/314356

    Article  Google Scholar 

  • Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J., & Foudoulis, C. (2003). TEMORA 1: A new zircon standard for phanerozoic U–Pb geochronology. Chemical Geology, 200(1–2), 155–170. https://doi.org/10.1016/S0009-2541(03)00165-7

    Article  Google Scholar 

  • Bonin, B. (1990). From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis. Geological Journal, 25(3–4), 261–270. https://doi.org/10.1002/gj.3350250309

    Article  Google Scholar 

  • Bouchez, J. L., Delas, C., Gleizes, G., Nédélec, A., & Cuney, M. (1992). Submagmatic microfractures in granites. Geology, 20(1), 35–38. https://doi.org/10.1130/0091-7613(1992)020%3c0035:SMIG%3e2.3.CO;2

    Article  Google Scholar 

  • Boynton, W. V. (1984). Geochemistry of the rare earth elements: meteorite studies. In P. Henderson (Ed.), Rare Earth Element Geochemistry (pp. 63–114). Elsevier. https://doi.org/10.1016/B978-0-444-42148-7.50008-3

    Chapter  Google Scholar 

  • Breiter, K., Frýda, J., & Leichmann, J. (2002). Phosphorus and rubidium in alkali feldspars: case studies and possible genetic interpretations. Bulletin of the Czech Geological Survey, 77(2), 93–104. ISSN: 1210-3527

    Google Scholar 

  • Broska, I., Williams, C. T., Uher, P., Konečný, P., & Leichmann, J. (2004). The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: The role of apatite and P-bearing feldspar. Chemical Geology, 205(1–2), 1–15. https://doi.org/10.1016/j.chemgeo.2003.09.004

    Article  Google Scholar 

  • Cabanis, B., & Lecolle, M. (1989). Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus De L’académie Des Sciences, Série 2, Mécanique, Physique, Chimie, Sciences De L’univers, Sciences De La Terre, 309(20), 223–229

    Google Scholar 

  • Cruz, C.C.F., (2020). Post-tectonic Variscan magmatism from northwest Iberia. Implications for W-Mo metallogeny. Case study of Lamas de Olo Pluton (p. 327). Portugal: Faculdade de Ciências da Universidade do Porto (Thesis submitted for the Ph.D. degree (unpublished thesis)).

  • Cruz, C., Góis, J., Sant’Ovaia, H., & Noronha, F. (2020). Geostatistical approach to the study of the magnetic susceptibility variation: Lamas de Olo Pluton case study. Journal of Iberian Geology, 46, 279–289. https://doi.org/10.1007/s41513-020-00128-x

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M. M., & Withers, A. C. (2004). Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227(1–2), 73–85. https://doi.org/10.1016/j.epsl.2004.08.004

    Article  Google Scholar 

  • De La Roche, H., Leterrier, J., Grandclaude, P., & Marchal, M. (1980). A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analysis—its relationships with current nomenclature. Chemical Geology, 29(1–4), 183–210. https://doi.org/10.1016/0009-2541(80)90020-0

    Article  Google Scholar 

  • De Muynck, D., Huelga-Suárez, G., Van Heghe, L., Degryse, P., & Vanhaecke, F. (2009). Systematic evaluation of a strontium-specific extraction chromatographic resin for obtaining a purified Sr fraction with quantitative recovery from complex and Ca-rich matrices. Journal of Analytical Atomic Spectrometry, 24(11), 1498–1510. https://doi.org/10.1039/B908645E

    Article  Google Scholar 

  • Debon, F., & LeFort, P. (1983). A chemical-mineralogical classification of common plutonic rocks and associations. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 73(3), 135–149. https://doi.org/10.1017/S0263593300010117

    Article  Google Scholar 

  • DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53(2), 189–202. https://doi.org/10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • Dias, R., Ribeiro, A., Romão, J., Coke, C., & Moreira, N. (2016). A review of the arcuate structures in the Iberian Variscides; constraints and genetic models. Tectonophysics, 681, 170–194. https://doi.org/10.1016/j.tecto.2016.04.011

    Article  Google Scholar 

  • Doblas, M., Oyarzun, R., López-Ruiz, J., Cebriá, J. M., Youbi, N., Mahecha, V., Lago, M., Pocoví, A., & Cabanis, B. (1998). Permo-carboniferous volcanism in Europe and northwest Africa: A superplume exhaust valve in the centre of Pangaea? Journal of African Earth Sciences, 26(1), 89–99. https://doi.org/10.1016/S0899-5362(97)00138-3

    Article  Google Scholar 

  • Duggen, S., Hoernle, K., van den Bogaard, P., & Garbe-Schönberg, D. (2005). Post-collisional transition from subduction- to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology, 46(6), 1155–1201. https://doi.org/10.1093/petrology/egi013

    Article  Google Scholar 

  • Errandonea-Martin, J., Sarrionandia, F., Carracedo-Sánchez, M., Ibarguchi, J. I. G., & Eguíluz, L. (2018). Petrography and geochemistry of late- to post-Variscan vaugnerite series rocks and calc-alkaline lamprophyres within a cordierite-bearing monzogranite (Sierra Bermeja Pluton, southern Iberian Massif). Geologica Acta, 16(3), 237–255. https://doi.org/10.1344/GeologicaActa2018.16.3.1

    Article  Google Scholar 

  • Fernandes, S., Gomes, M., Teixeira, R., Corfu, F. (2013). Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal. Geophysical Research Abstracts, EGU General Assembly, 15, pp. 1. Retrieved February 24, 2021, from https://ui.adsabs.harvard.edu/#abs/2013EGUGA..1511566F/abstract

  • Fernández-Suárez, J., Arenas, R., Jeffries, T. E., Whitehouse, M. J., & Villaseca, C. (2006). A U–Pb study of zircons from a lower crustal granulite xenolith of the Spanish Central System: A record of Iberian Lithospheric evolution from the neoproterozoic to the triassic. The Journal of Geology, 114(4), 471–483. https://doi.org/10.1086/504180

    Article  Google Scholar 

  • Finger, F., & Schiller, D. (2012). Lead contents of S-type granites and their petrogenetic significance. Contributions to Mineralogy and Petrology, 164(5), 747–755. https://doi.org/10.1007/s00410-012-0771-3

    Article  Google Scholar 

  • Foley, S., Venturelli, G., Green, D. H., & Toscani, L. (1987). The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2), 81–134. https://doi.org/10.1016/0012-8252(87)90001-8

    Article  Google Scholar 

  • Förster, H. J., Gottesmann, B., Tischendorf, G., Siebel, W., Rhede, D., Seltmann, R., & Wasternack, J. (2007). Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: A record of source heterogeneity of post-collisional felsic magmatism. Neues Jahrbuch Für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 183(2), 123–147. https://doi.org/10.1127/0077-7757/2007/0064

    Article  Google Scholar 

  • Frey, F. A., Green, D. H., & Roy, S. D. (1978). Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3), 463–513. https://doi.org/10.1093/petrology/19.3.463

    Article  Google Scholar 

  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033

    Article  Google Scholar 

  • Furman, T., & Graham, D. (1999). Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 24, 237–262. https://doi.org/10.1016/S0419-0254(99)80014-7

    Article  Google Scholar 

  • Green, T. H. (1995). Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3–4), 347–359. https://doi.org/10.1016/0009-2541(94)00145-X

    Article  Google Scholar 

  • Harris, N. B. W., Pearce, J. A., & Tindle, A. G. (1986). Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19, 67–81. https://doi.org/10.1144/GSL.SP.1986.019.01.04

    Article  Google Scholar 

  • Helal, B., (1992). Granitoïdes, granites à métaux rares et hydrothermalisme associe: géologie, minerálogie et geochimie de plusieurs suites tardi-hercyniennes (Nord du Portugal) (p. 508). France: Ecole Nacionale Supérieure des Mines de Saint-Etienne (Thesis submitted for the Ph.D. degree (unpublished thesis)).

  • Hrouda, F. (1985). The magnetic fabric of the Brno Massif. Sborník Geologických Ved Užitá Geofyzika, 19, 89–112

    Google Scholar 

  • Hrouda, F., Verner, K., Kubínová, Š, Buriánek, D., Faryad, S. W., Chlupácová, M., & Holub, F. V. (2016). Magnetic fabric and emplacement of dykes of lamprophyres and related rocks of the Central Bohemian Dyke Swarm (Central European Variscides). Journal of Geosciences, 61(4), 335–354. https://doi.org/10.3190/jgeosci.222

    Article  Google Scholar 

  • Inglis, E. C., Creech, J. B., Deng, Z., & Moynier, F. (2018). High-precision zirconium stable isotope measurements of geological reference materials as measured by double-spike MC-ICPMS. Chemical Geology, 493, 544–552. https://doi.org/10.1016/j.chemgeo.2018.07.007

    Article  Google Scholar 

  • Jacobsen, S. B., & Wasserburg, G. J. (1984). Sm-Nd isotopic evolution of chondrites and achondrites II. Earth and Planetary Science Letters, 67(2), 137–150. https://doi.org/10.1016/0012-821X(84)90109-2

    Article  Google Scholar 

  • Jung, S., Masberg, P., Mihm, D., & Hoernes, S. (2009). Partial melting of diverse crustal sources—constraints from Sr–Nd–O isotope compositions of quartz diorite–granodiorite–leucogranite associations (Kaoko Belt, Namibia). Lithos, 111(3–4), 236–251. https://doi.org/10.1016/j.lithos.2008.10.010

    Article  Google Scholar 

  • Kirstein, L. A., Davies, G. R., & Heeremans, M. (2006). The petrogenesis of Carboniferous-Permian dyke and sill intrusions across northern Europe. Contributions to Mineralogy and Petrology, 152(6), 721–742. https://doi.org/10.1007/s00410-006-0129-9

    Article  Google Scholar 

  • LaFlèche, M. R., Camiré, G., & Jenner, G. A. (1998). Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec Canada. Chemical Geology, 148(3–4), 115–136. https://doi.org/10.1016/S0009-2541(98)00002-3

    Article  Google Scholar 

  • Lago, M., Arranz, E., Pocoví, A., Galé, C., & Gil-Imaz, A. (2004). Permian magmatism and basin dynamics in the southern Pyrenees: A record of the transition from late Variscan transtension to early Alpine extension. Geological Society, London, Special Publications, 223, 439–464. https://doi.org/10.1144/GSL.SP.2004.223.01.19

    Article  Google Scholar 

  • Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schmid, R., Sorensen, H., & Woolley, A. R. (2002). Igneous rocks: a classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. ISBN: 978-0-511-06864-5

    Google Scholar 

  • Liew, T. C., & Hofmann, A. W. (1988). Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98(2), 129–138. https://doi.org/10.1007/BF00402106

    Article  Google Scholar 

  • Liu, B., Wu, J. H., Li, H., Wu, Q. H., Evans, N. J., Kong, H., & Xi, X. S. (2020). Geochronology, geochemistry and petrogenesis of the Dengfuxian lamprophyres: Implications for the early Cretaceous tectonic evolution of the South China Block. Geochemistry, 80(2), 125598. https://doi.org/10.1016/j.chemer.2020.125598

    Article  Google Scholar 

  • Lorenz, V., & Nicholls, I. A. (1976). The Permocarboniferous Basin and Range Province of Europe: an application op plate tectonics. In H. Falke (Ed.), The Continental Permian in Central, West, and South Europe. Nato Advanced Study Institutes Series (Series C—Mathematical and Physical Sciences) (Vol. 22, pp. 313–342). Springer. https://doi.org/10.1007/978-94-010-1461-8_22

    Chapter  Google Scholar 

  • Lugmair, G. W., & Marti, K. (1978). Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349–357. https://doi.org/10.1016/0012-821X(78)90021-3

    Article  Google Scholar 

  • Ma, L., Jiang, S. Y., Hofmann, A. W., Dai, B. Z., Hou, M. L., Zhao, K. D., Chen, L. H., Li, J. W., & Jiang, Y. H. (2014). Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochimica Et Cosmochimica Acta, 124, 250–271. https://doi.org/10.1016/j.gca.2013.09.035

    Article  Google Scholar 

  • McDonough, W. F. (1990). Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 101(1), 1–18. https://doi.org/10.1016/0012-821X(90)90119-I

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the earth. Chemical Geology, 120(3–4), 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Michard, A., Gurriet, P., Soudant, M., & Albarede, F. (1985). Nd isotopes in French Phanerozoic shales: external vs internal aspects of crustal evolution. Geochimica Et Cosmochimica Acta, 49(2), 601–610. https://doi.org/10.1016/0016-7037(85)90051-1

    Article  Google Scholar 

  • Müller, D., Rock, N. M. S., & Groves, D. I. (1992). Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: A pilot study. Mineralogy and Petrology, 46, 259–289. https://doi.org/10.1007/BF01173568

    Article  Google Scholar 

  • Muttoni, G., Kent, D. V., Garzanti, E., Brack, P., Abrahamsen, N., & Gaetani, M. (2003). Early permian pangea ‘B’ to late permian pangea ‘A.’ Earth and Planetary Science Letters, 215(3–4), 379–394. https://doi.org/10.1016/S0012-821X(03)00452-7

    Article  Google Scholar 

  • Nédélec, A., & Bouchez, J. L. (2015). Granites: Petrology, Structure, Geological Setting, and Metallogeny. Oxford University Press. ISBN: 978-0-19-870561-1

    Book  Google Scholar 

  • Oliveira, A., Martins, H.C.B., Sant’Ovaia, H., 2019. The Lamas de Olo microgranite and lamprophyre veins: Petrography and Anisotropy of Magnetic Susceptibility. Livro de Atas do IX Congresso Jovens Investigadores em Geociências, LEG 2019, Estremoz, 23–24 de novembro de 2019, pp. 23–26

  • Oliveira, A., Martins, H.C.B., Sant’Ovaia, H. (2020a). Geochemical study of two compositionally contrasting veins of the Lamas de Olo region (Celorico de Basto). Livro de Atas do X Congresso Jovens Investigadores em Geociências, LEG 2020, Estremoz, 20 de novembro de 2020, pp. 16–19

  • Oliveira, A., Martins, H.C.B., Sant’Ovaia, H. (2020b). Insights into the felsic vein magmatism in northern Portugal (Central Iberian Zone): an integrated geochemical and petrophysical study. In: 20th International Multidisciplinary Scientific GeoConference, SGEM 2020, Conference Proceedings, 20 (1.1), pp. 139–146. https://doi.org/10.5593/sgem2020/1.1/s01.018, ISBN: 978-619-7603-04-0, ISSN: 1314–2704

  • Orejana, D., Villaseca, C., Billström, K., & Paterson, B. A. (2008). Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe. Contributions to Mineralogy and Petrology, 156(4), 477–500. https://doi.org/10.1007/s00410-008-0297-x

    Article  Google Scholar 

  • Orejana, D., Villaseca, C., & Kristoffersen, M. (2020). Geochemistry and geochronology of mafic rocks from the Spanish Central System: Constraints on the mantle evolution beneath central Spain. Geoscience Frontiers, 11(5), 1651–1667. https://doi.org/10.1016/j.gsf.2020.01.002

    Article  Google Scholar 

  • Patiño Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168, 55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05

    Article  Google Scholar 

  • Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/BF00384745

    Article  Google Scholar 

  • Pereira, E. (1989). Notícia Explicativa da Folha 10-A (Celorico de Basto). In: Carta Geológica de Portugal na Escala 1:50,000. Serviços Geológicos de Portugal

  • Pereira, E., Silva, N., Moreira, A., Ribeiro, A. (1987). Folha 10-A (Celorico de Basto). Carta Geológica de Portugal na Escala 1:50,000. Serviços Geológicos de Portugal

  • Perini, G., Cebria, J. M., Lopez-Ruiz, J., & Doblas, M. (2004). Carboniferous-Permian mafic magmatism in the Variscan belt of Spain and France: Implications for mantle sources. Geological Society, London, Special Publications, 223(1), 415–438. https://doi.org/10.1144/GSL.SP.2004.223.01.18

    Article  Google Scholar 

  • Pin, C., & Santos Zalduegui, J. F. (1997). Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 339(1–2), 79–89. https://doi.org/10.1016/S0003-2670(96)00499-0

    Article  Google Scholar 

  • Raposo, M. I. B. (2011). Magnetic fabric of the Brazilian dike swarms: a review. In E. Petrovský, D. Ivers, T. Harinarayana, & E. Herrero-Bervera (Eds.), The Earth’s Magnetic Interior. IAGA Special Sopron Book Series (Vol. 1, pp. 247–262). Springer. https://doi.org/10.1007/978-94-007-0323-0_17

    Chapter  Google Scholar 

  • Raposo, M. I. B., & Ernesto, M. (1995). Anisotropy of magnetic susceptibility in the Ponta Grossa dyke swarm (Brazil) and its relationship with magma flow direction. Physics of the Earth and Planetary Interiors, 87(3–4), 183–196. https://doi.org/10.1016/0031-9201(94)02970-M

    Article  Google Scholar 

  • Rock, N. M. S. (1977). The nature and origin of lamprophyres: some definitions, distinctions, and derivations. Earth-Science Reviews, 13(2), 123–169. https://doi.org/10.1016/0012-8252(77)90020-4

    Article  Google Scholar 

  • Rock, N. M. S. (1987). The nature and origin of lamprophyres: An overview. Geological Society, London, Special Publications, 30, 191–226. https://doi.org/10.1144/GSL.SP.1987.030.01.09

    Article  Google Scholar 

  • Rock, N. M. S. (1991). Lamprophyres. Blackie. ISBN: 978-1-4757-0931-5

    Book  Google Scholar 

  • Rubatto, D., & Gebauer, D. (2000). Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the western Alps. In M. Pagel, V. Barbin, P. Blanc, & D. Ohnenstetter (Eds.), Cathodoluminescence in Geosciences (pp. 373–400). Springer. https://doi.org/10.1007/978-3-662-04086-7_15

    Chapter  Google Scholar 

  • Rudnick, R. L., & Fountain, D. M. (1995). Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3), 267–309. https://doi.org/10.1029/95RG01302

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry 3: The Crust (pp. 1–64). Elsevier-Pergamon. ISBN: 0-08-044847-X

    Google Scholar 

  • Scarrow, J. H., Bea, F., Montero, P., & Molina, J. F. (2008). Shoshonites, vaugnerites and potassic lamprophyres: Similarities and differences between ‘ultra’-high-K rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 99(3–4), 159–175. https://doi.org/10.1017/S1755691009008032

    Article  Google Scholar 

  • Scarrow, J. H., Bea, F., Montero, P., Molina, J. F., & Vaughan, A. P. M. (2006). A precise late Permian 40Ar/39Ar age for Central Iberian camptonitic lamprophyres. Geologica Acta, 4(4), 451–459. https://doi.org/10.1344/105.000000346

    Article  Google Scholar 

  • Scarrow, J. H., Molina, J. F., Bea, F., Montero, P., & Vaughan, A. P. (2011). Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: A case study from the Central Iberian Zone. Tectonics, 30(4), TC4007. https://doi.org/10.1029/2010TC002755

    Article  Google Scholar 

  • Seifert, T. (2008). Metallogeny and Petrogenesis of Lamprophyres in the Mid-European Variscides. IOS Press Millpress. ISBN: 978-1-58603-988-2

    Google Scholar 

  • Semiz, B., Çoban, H., Roden, M. F., Özpinar, Y., Flower, M. F. J., & McGregor, H. (2012). Mineral composition in cognate inclusions in Late Miocene-Early Pliocene potassic lamprophyres with affinities to lamproites from the Denizli region, Western Anatolia, Turkey: Implications for uppermost mantle processes in a back-arc setting. Lithos, 134–135, 253–272. https://doi.org/10.1016/j.lithos.2012.01.005

    Article  Google Scholar 

  • Sen, G., & Leeman, W. P. (1991). Iron-rich lherzolitic xenoliths from Oahu: Origin and implications for Hawaiian magma sources. Earth and Planetary Science Letters, 102(1), 45–57. https://doi.org/10.1016/0012-821X(91)90016-B

    Article  Google Scholar 

  • Shaw, D. M. (1970). Trace element fractionation during anatexis. Geochimica Et Cosmochimica Acta, 34(2), 237–243. https://doi.org/10.1016/0016-7037(70)90009-8

    Article  Google Scholar 

  • Shaw, A. M., Hilton, D. R., Fischer, T. P., Walker, J. A., & Alvarado, G. E. (2003). Contrasting He–C relationships in Nicaragua and Costa Rica: Insights into C cycling through subduction zones. Earth and Planetary Science Letters, 214(3–4), 499–513. https://doi.org/10.1016/S0012-821X(03)00401-1

    Article  Google Scholar 

  • Soder, C. G., & Romer, R. L. (2018). Post-collisional potassic–ultrapotassic magmatism of the variscan orogen: implications for mantle metasomatism during continental subduction. Journal of Petrology, 59(6), 1007–1034. https://doi.org/10.1093/petrology/egy053

    Article  Google Scholar 

  • Štemprok, M., Dolejš, D., & Holub, F. V. (2014). Late Variscan calc-alkaline lamprophyres in the Krupka ore district, Eastern Krušné hory/Erzgebirge: Their relationship to Sn–W mineralization. Journal of Geosciences, 59(1), 41–68. https://doi.org/10.3190/jgeosci.156

    Article  Google Scholar 

  • Štemprok, M., Dolejš, D., Müller, A., & Seltmann, R. (2008). Textural evidence of magma decompression, devolatilization and disequilibrium quenching: An example from the Western Krušné hory/Erzgebirge granite pluton. Contributions to Mineralogy and Petrology, 155(1), 93–109. https://doi.org/10.1007/s00410-007-0229-1

    Article  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Sylvester, P. J. (1998). Post-collisional strongly peraluminous granites. Lithos, 45(1–4), 29–44. https://doi.org/10.1016/S0024-4937(98)00024-3

    Article  Google Scholar 

  • Teixeira, R.J.S. (2008). Mineralogia, petrologia e geoquímica dos granitos e seus encraves da região de Carrazeda de Ansiães (p. 463). Portugal: Universidade de Trás-os-Montes e Alto Douro (Thesis submitted for the Ph.D. degree (unpublished thesis)).

  • Timmerman, M. J. (2004). Timing, geodynamic setting and character of Permo-Carboniferous magmatism in the foreland of the Variscan Orogen, NW Europe. Geological Society, London, Special Publications, 223(1), 41–74. https://doi.org/10.1144/GSL.SP.2004.223.01.03

    Article  Google Scholar 

  • Ubide, T., Lago, M., Arranz, E., Galé, C., & Larrea, P. (2010). The lamprophyric sub-vertical dyke swarm from Aiguablava (Catalonian Coastal Ranges): petrology and composition. Geogaceta, 49, 83–86. ISSN: 2173-6545

    Google Scholar 

  • Vernon, R. H. (2004). A Practical Guide to Rock Microstructure. Cambridge University Press, UK. ISBN: 052181443X 

    Book  Google Scholar 

  • Villa, I. M., De Bièvre, P., Holden, N. E., & Renne, P. R. (2015). IUPAC-IUGS recommendation on the half-life of 87Rb. Geochimica Et Cosmochimica Acta, 164, 382–385. https://doi.org/10.1016/j.gca.2015.05.025

    Article  Google Scholar 

  • Villaseca, C., Barbero, L., & Herreros, V. (1998). A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Transactions of the Royal Society of Edinburgh Earth Sciences, 89, 113–119. https://doi.org/10.1017/S0263593300007045

    Article  Google Scholar 

  • Villaseca, C., Orejana, D., Pin, C., López-Garcia, J. A., & Andonaegui, P. (2004). Le magmatisme basique hercynien et post-hercynien du Système central espagnol: essai de caractérisation des sources mantelliques. Comptes Rendus Geoscience, 336(10), 877–888. https://doi.org/10.1016/j.crte.2004.02.008

    Article  Google Scholar 

  • Wilson, M. (1989). Igneous Petrogenesis. Springer. https://doi.org/10.1007/978-1-4020-6788-4. ISBN: 978-1-4020-6788-4

    Book  Google Scholar 

  • Wu, F., Liu, X., Ji, W., Wang, J., & Yang, L. (2017). Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60(7), 1201–1219. https://doi.org/10.1007/s11430-016-5139-1

    Article  Google Scholar 

  • Zeng, R., Lai, J., Mao, X., Xiao, W., Yan, J., Zhang, C., Hu, J., & Ai, Q. (2020). Petrogenesis and tectonic significance of the Early Devonian lamprophyres and diorites in the Alxa Block NW China. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125685

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT), through the project ref. UIDB/04683/2020 - ICT (Institute of Earth Sciences). The corresponding author is financially supported by FCT through an individual Ph.D. grant (reference SFRH/BD/138818/2018). The authors thank José Carlos Oliveira and Dr. Cláudia Cruz for their help during the field studies and sample collection. We also acknowledge Dr. Javier Rodríguez (SGIKER, University of the Basque Country) and Professor Pilar Montero (IBERSIMS, University of Granada) for the isotopic and geochronological analyses, respectively, Dr. Teresa Ubide for the editorial work, and two anonymous reviewers for their comments which helped to greatly improve the quality of the original manuscript.

Funding

This work was supported by the Portuguese Foundation for Science and Technology (FCT), through the project ref. UIDB/04683/2020 - ICT (Institute of Earth Sciences). The corresponding author is financially supported by FCT through an individual Ph.D. grant (reference SFRH/BD/138818/2018).

Author information

Authors and Affiliations

Authors

Contributions

AO: conceptualization, methodology, software, formal analysis, validation, investigation, resources, data curation, writing - original draft, writing - review & editing, visualization, project administration. HM: methodology, validation, investigation, resources, data curation, writing - original draft, writing - review & editing, visualization, supervision, project administration. HS’O: methodology, validation, investigation, resources, data curation, writing - original draft, writing - review & editing, visualization.

Corresponding author

Correspondence to António João Teixeira Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Online Resource 1

- SHRIMPTOOLS data processing. IBERSIMS laboratory, University of Granada, Spain (XLSX 527 KB)

Online Resource 2

- Sr and Nd isotope composition of the Lamas de Olo lamprophyre (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.J.T., Martins, H.C.B. & da Silva, H.M.S.M. Permo-Carboniferous hypabyssal magmatism in northern Portugal: the case of the Lamas de Olo microgranite and lamprophyre dykes. J Iber Geol 48, 1–28 (2022). https://doi.org/10.1007/s41513-021-00179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-021-00179-8

Keywords

Palabras clave

Navigation