Skip to main content

Advertisement

Log in

Immunology of idiopathic nephrotic syndrome

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The pathogenesis of idiopathic nephrotic syndrome (INS) is as yet unknown, but several lines of evidence indicate that the immune system may play a crucial pathogenic role in non-genetic INS. The most important of these are, first, the effectiveness of therapy based on immunosuppression and, second, a vast body of data derived both from experimental models and from patient studies that implicate T cells and more recently B cells as major players in INS pathogenesis. However, recent findings also suggest a direct role of podocytes as drivers of the disease process, and the interplay between the glomerulus and the immune system is still being elucidated. In this review we provide an overview of current knowledge on the role of different components of the immune system in determining disease. Advances in our understanding of the pathogenesis of INS may help drive new, more tailored therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eddy AA, Symons JM (2003) Nephrotic syndrome in childhood. Lancet 362(9384):629–639

    Article  PubMed  Google Scholar 

  2. Vivarelli M, Moscaritolo E, Tsalkidis A, Massella L, Emma F (2010) Time for initial response to steroids is a major prognostic factor in idiopathic nephrotic syndrome. J Pediatr 156(6):965–971

    Article  PubMed  Google Scholar 

  3. Vivarelli M, Massella L, Ruggiero B, Emma F (2016) Minimal change disease. Clin J Am Soc Nephrol. doi:10.2215/CJN.05000516

    PubMed  PubMed Central  Google Scholar 

  4. Fogo AB (2015) Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol 11(2):76–87

    Article  CAS  PubMed  Google Scholar 

  5. Maas RJ, Wetzels JF (2017) Glomerular disease in 2016: New advances in the treatment of glomerular disease. Nat Rev Nephrol 13(2):65–66

    Article  CAS  PubMed  Google Scholar 

  6. Lovric S, Ashraf S, Tan W, Hildebrandt F (2016) Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 31(11):1802–1813

    Article  CAS  PubMed  Google Scholar 

  7. Davin JC (2016) The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol 31(2):207–215

    Article  PubMed  Google Scholar 

  8. Konigshausen E, Sellin L (2016) Circulating permeability factors in primary focal segmental glomerulosclerosis: a review of proposed candidates. Biomed Res Int 2016:3765608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF (1972) Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet 2(7773):343–348

    Article  CAS  PubMed  Google Scholar 

  10. Mauer SM, Hellerstein S, Cohn RA, Sibley RK, Vernier RL (1979) Recurrence of steroid-responsive nephrotic syndrome after renal transplantation. J Pediatr 95(2):261–264

    Article  CAS  PubMed  Google Scholar 

  11. Kemper MJ, Wolf G, Muller-Wiefel DE (2001) Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 344(5):386–387

    Article  CAS  PubMed  Google Scholar 

  12. Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A (2012) Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med 366(17):1648–1649

    Article  CAS  PubMed  Google Scholar 

  13. Zimmerman SW (1984) Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 22(1):32–38

    CAS  PubMed  Google Scholar 

  14. Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C, Kurts C, Steinkasserer A, Gessner A (2013) Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 24(6):906–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rabelink TJ, de Zeeuw D (2015) The glycocalyx—linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol 11(11):667–676

    Article  CAS  PubMed  Google Scholar 

  16. McDonald JC, Moore DL, Quennec P (1989) Clinical and epidemiologic features of mumps meningoencephalitis and possible vaccine-related disease. Pediatr Infect Dis J 8(11):751–755

    Article  CAS  PubMed  Google Scholar 

  17. Uwaezuoke SN (2015) Steroid-sensitive nephrotic syndrome in children: triggers of relapse and evolving hypotheses on pathogenesis. Ital J Pediatr 41:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gulati A, Sinha A, Sreenivas V, Math A, Hari P, Bagga A (2011) Daily corticosteroids reduce infection-associated relapses in frequently relapsing nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol 6(1):63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yildiz N, Sever L, Kasapcopur O, Cullu F, Arisoy N, Caliskan S (2013) Hepatitis B virus vaccination in children with steroid sensitive nephrotic syndrome: immunogenicity and safety? Vaccine 31(33):3309–3312

    Article  CAS  PubMed  Google Scholar 

  20. Abeyagunawardena AS, Goldblatt D, Andrews N, Trompeter RS (2003) Risk of relapse after meningococcal C conjugate vaccine in nephrotic syndrome. Lancet 362(9382):449–450

    Article  CAS  PubMed  Google Scholar 

  21. Salsano ME, Graziano L, Luongo I, Pilla P, Giordano M, Lama G (2007) Atopy in childhood idiopathic nephrotic syndrome. Acta Paediatr 96(4):561–566

    Article  PubMed  Google Scholar 

  22. Shalhoub RJ (1974) Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2(7880):556–560

    Article  CAS  PubMed  Google Scholar 

  23. Pereira Wde F, Brito-Melo GE, Guimaraes FT, Carvalho TG, Mateo EC, Simoes e Silva AC (2014) The role of the immune system in idiopathic nephrotic syndrome: a review of clinical and experimental studies. Inflamm Res 63(1):1–12

    Article  PubMed  CAS  Google Scholar 

  24. Sahali D, Sendeyo K, Mangier M, Audard V, Zhang SY, Lang P, Ollero M, Pawlak A (2014) Immunopathogenesis of idiopathic nephrotic syndrome with relapse. Semin Immunopathol 36(4):421–429

    Article  PubMed  PubMed Central  Google Scholar 

  25. Couser WG (2012) Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 23(3):381–399

    Article  CAS  PubMed  Google Scholar 

  26. Lama G, Luongo I, Tirino G, Borriello A, Carangio C, Salsano ME (2002) T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am J Kidney Dis 39(5):958–965

    Article  CAS  PubMed  Google Scholar 

  27. Kemper MJ, Zepf K, Klaassen I, Link A, Muller-Wiefel DE (2005) Changes of lymphocyte populations in pediatric steroid-sensitive nephrotic syndrome are more pronounced in remission than in relapse. Am J Nephrol 25(2):132–137

    Article  PubMed  Google Scholar 

  28. Lapillonne H, Leclerc A, Ulinski T, Balu L, Garnier A, Dereuddre-Bosquet N, Watier H, Schlageter MH, Deschenes G (2008) Stem cell mobilization in idiopathic steroid-sensitive nephrotic syndrome. Pediatr Nephrol 23(8):1251–1256

    Article  PubMed  Google Scholar 

  29. Wang Y, Wang Y, Feng X, Bao S, Yi S, Kairaitis L, Tay YC, Rangan GK, Harris DC (2001) Depletion of CD4(+) T cells aggravates glomerular and interstitial injury in murine adriamycin nephropathy. Kidney Int 59(3):975–984

    Article  CAS  PubMed  Google Scholar 

  30. Yap HK, Cheung W, Murugasu B, Sim SK, Seah CC, Jordan SC (1999) Th1 and Th2 cytokine mRNA profiles in childhood nephrotic syndrome: evidence for increased IL-13 mRNA expression in relapse. J Am Soc Nephrol 10(3):529–537

    CAS  PubMed  Google Scholar 

  31. Araya CE, Wasserfall CH, Brusko TM, Mu W, Segal MS, Johnson RJ, Garin EH (2006) A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 21(5):603–610

    Article  PubMed  Google Scholar 

  32. Shao XS, Yang XQ, Zhao XD, Li Q, Xie YY, Wang XG, Wang M, Zhang W (2009) The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr Nephrol 24(9):1683–1690

    Article  PubMed  Google Scholar 

  33. Wang YM, Hu M, Wang Y, Polhill T, Zhang GY, Wang Y, Lee VW, Harris DC, Alexander SI (2008) Regulatory T cells in renal disease. Int J Clin Exp Med 1(4):294–304

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hashimura Y, Nozu K, Kanegane H, Miyawaki T, Hayakawa A, Yoshikawa N, Nakanishi K, Takemoto M, Iijima K, Matsuo M (2009) Minimal change nephrotic syndrome associated with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Nephrol 24(6):1181–1186

    Article  PubMed  Google Scholar 

  35. Bertelli R, Bonanni A, Di Donato A, Cioni M, Ravani P, Ghiggeri GM (2016) Regulatory T cells and minimal change nephropathy: in the midst of a complex network. Clin Exp Immunol 183(2):166–174

    Article  CAS  PubMed  Google Scholar 

  36. Sellier-Leclerc AL, Duval A, Riveron S, Macher MA, Deschenes G, Loirat C, Verpont MC, Peuchmaur M, Ronco P, Monteiro RC, Haddad E (2007) A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J Am Soc Nephrol 18(10):2732–2739

    Article  PubMed  Google Scholar 

  37. Carsetti R, Rosado MM, Wardmann H (2004) Peripheral development of B cells in mouse and man. Immunol Rev 197:179–191

    Article  PubMed  Google Scholar 

  38. Hoffman W, Lakkis FG, Chalasani G (2016) B Cells, Antibodies, and more. Clin J Am Soc Nephrol 11(1):137–154

    Article  CAS  PubMed  Google Scholar 

  39. Benz K, Dotsch J, Rascher W, Stachel D (2004) Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 19(7):794–797

    Article  PubMed  Google Scholar 

  40. Ravani P, Bonanni A, Rossi R, Caridi G, Ghiggeri GM (2016) Anti-CD20 antibodies for idiopathic nephrotic syndrome in children. Clin J Am Soc Nephrol 11(4):710–720

    Article  CAS  PubMed  Google Scholar 

  41. Leandro MJ (2013) B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Res Ther 15[Suppl 1]:S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Huang H, Benoist C, Mathis D (2010) Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc Natl Acad Sci USA 107(10):4658–4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Worch J, Makarova O, Burkhardt B (2015) Immunreconstitution and infectious complications after rituximab treatment in children and adolescents: what do we know and what can we learn from adults? Cancers (Basel) 7(1):305–328

    Article  Google Scholar 

  44. Dantal J, Godfrin Y, Koll R, Perretto S, Naulet J, Bouhours JF, Soulillou JP (1998) Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J Am Soc Nephrol 9(9):1709–1715

    CAS  PubMed  Google Scholar 

  45. Kemper MJ, Altrogge H, Ganschow R, Muller-Wiefel DE (2002) Serum levels of immunoglobulins and IgG subclasses in steroid sensitive nephrotic syndrome. Pediatr Nephrol 17(6):413–417

    Article  PubMed  Google Scholar 

  46. Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, Burke GW, Bruneval P, Naesens M, Jackson A, Alachkar N, Canaud G, Legendre C, Anglicheau D, Reiser J, Sarwal MM (2014) A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 6(256):256ra136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kemper MJ, Meyer-Jark T, Lilova M, Muller-Wiefel DE (2003) Combined T- and B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol 60(4):242–247

    Article  CAS  PubMed  Google Scholar 

  48. Dossier C, Sellier-Leclerc AL, Rousseau A, Michel Y, Gautheret-Dejean A, Englender M, Madhi F, Charbit M, Ulinski T, Simon T, Jacqz-Aigrain E, Deschenes G (2014) Prevalence of herpesviruses at onset of idiopathic nephrotic syndrome. Pediatr Nephrol 29(12):2325–2331

    Article  PubMed  Google Scholar 

  49. Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O’Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP, Mid-West Pediatric Nephrology C (2015) HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 26(7):1701–1710

    Article  CAS  PubMed  Google Scholar 

  50. Sellier-Leclerc AL, Macher MA, Loirat C, Guerin V, Watier H, Peuchmaur M, Baudouin V, Deschenes G (2010) Rituximab efficiency in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol 25(6):1109–1115

    Article  PubMed  Google Scholar 

  51. Colucci M, Carsetti R, Cascioli S, Casiraghi F, Perna A, Rava L, Ruggiero B, Emma F, Vivarelli M (2016) B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 27(6):1811–1822

    Article  CAS  PubMed  Google Scholar 

  52. Sellier-Leclerc AL, Baudouin V, Kwon T, Macher MA, Guerin V, Lapillonne H, Deschenes G, Ulinski T (2012) Rituximab in steroid-dependent idiopathic nephrotic syndrome in childhood—follow-up after CD19 recovery. Nephrol Dial Transplant 27(3):1083–1089

    Article  CAS  PubMed  Google Scholar 

  53. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, Li J, Mattiazzi A, Ciancio G, Chen L, Zilleruelo G, Abitbol C, Chandar J, Seeherunvong W, Ricordi C, Ikehata M, Rastaldi MP, Reiser J, Burke GW 3rd (2011) Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med 3(85):85ra46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tasaki M, Shimizu A, Hanekamp I, Torabi R, Villani V, Yamada K (2014) Rituximab treatment prevents the early development of proteinuria following pig-to-baboon xeno-kidney transplantation. J Am Soc Nephrol 25(4):737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Basu B (2014) Ofatumumab for rituximab-resistant nephrotic syndrome. N Engl J Med 370(13):1268–1270

    Article  CAS  PubMed  Google Scholar 

  56. Schuh A (2011) Anti-CD20: tales of identical twins? Blood 118(19):5066–5067

    Article  CAS  PubMed  Google Scholar 

  57. Barisoni L, Schnaper HW, Kopp JB (2007) A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol 2(3):529–542

    Article  PubMed  Google Scholar 

  58. Banas MC, Banas B, Hudkins KL, Wietecha TA, Iyoda M, Bock E, Hauser P, Pippin JW, Shankland SJ, Smith KD, Stoelcker B, Liu G, Grone HJ, Kramer BK, Alpers CE (2008) TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 19(4):704–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Wymer DT, Yamabe H, Mathieson PW, Saleem MA, Garin EH, Johnson RJ (2012) Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-nB-dependent pathway. Nephrol Dial Transplant 27(1):81–89

    Article  CAS  PubMed  Google Scholar 

  60. Akilesh S, Huber TB, Wu H, Wang G, Hartleben B, Kopp JB, Miner JH, Roopenian DC, Unanue ER, Shaw AS (2008) Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc Natl Acad Sci USA 105(3):967–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reiser J, Mundel P (2004) Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol 15(9):2246–2248

    Article  PubMed  Google Scholar 

  62. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, Pavenstadt H (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol 168(12):6244–6252

    Article  CAS  PubMed  Google Scholar 

  63. Lee HS (2012) Mechanisms and consequences of TGF-ss overexpression by podocytes in progressive podocyte disease. Cell Tissue Res 347(1):129–140

    Article  CAS  PubMed  Google Scholar 

  64. Xing CY, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW (2006) Direct effects of dexamethasone on human podocytes. Kidney Int 70(6):1038–1045

    Article  CAS  PubMed  Google Scholar 

  65. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, Johnson RJ (2009) Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 20(2):260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, Chen L, Ciancio G, Faridi MH, Behr D, Campbell KN, Chang JM, Chen HC, Oh J, Faul C, Arnaout MA, Fiorina P, Gupta V, Greka A, Burke GW 3rd, Mundel P (2013) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 369(25):2416–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Novelli R, Gagliardini E, Ruggiero B, Benigni A, Remuzzi G (2016) Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Am J Physiol Ren Physiol 310(5):F335–F341

    Article  CAS  Google Scholar 

  68. Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E (2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35(6):474–483

    Article  CAS  PubMed  Google Scholar 

  69. Beaudreuil S, Lorenzo HK, Durrbach A (2015) The anti-CD40 auto-antibody: a biomarker or a factor for the permeability of recurrent focal segmental glomerulosclerosis? Ann Transl Med 3(9):115

    PubMed  PubMed Central  Google Scholar 

  70. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, Mathieson PW, Bakker WW, Saleem MA (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 19(11):2140–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, Kapojos JJ (2005) Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 20(10):1410–1415

    Article  PubMed  Google Scholar 

  72. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, Maiguel D, Karumanchi SA, Yap HK, Saleem M, Zhang Q, Nikolic B, Chaudhuri A, Daftarian P, Salido E, Torres A, Salifu M, Sarwal MM, Schaefer F, Morath C, Schwenger V, Zeier M, Gupta V, Roth D, Rastaldi MP, Burke G, Ruiz P, Reiser J (2011) Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17(8):952–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, Wadhwani S, Cao Y, Peev V, Zloza A, Lusciks J, Hayek SS, O’Connor C, Bitzer M, Gupta V, Sever S, Sykes DB, Scadden DT, Reiser J (2017) Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med 23(1):100–106

    Article  CAS  PubMed  Google Scholar 

  74. Kronbichler A, Saleem MA, Meijers B, Shin JI (2016) Soluble urokinase receptors in focal segmental glomerulosclerosis: a review on the scientific point of view. J Immunol Res 2016:2068691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, McCarthy ET, Srivastava T, Domen J, Tormo A, Gauchat JF (2015) Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015:714964

    Article  PubMed  PubMed Central  Google Scholar 

  76. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17(1):117–122

    Article  CAS  PubMed  Google Scholar 

  77. Larkins N, Kim S, Craig J, Hodson E (2016) Steroid-sensitive nephrotic syndrome: an evidence-based update of immunosuppressive treatment in children. Arch Dis Child 101(4):404–408

    Article  PubMed  Google Scholar 

  78. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, Miura K, Aya K, Nakanishi K, Ohtomo Y, Takahashi S, Tanaka R, Kaito H, Nakamura H, Ishikura K, Ito S, Ohashi Y, Rituximab for Childhood-onset Refractory Nephrotic Syndrome Study G (2014) Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384(9950):1273–1281

    Article  CAS  PubMed  Google Scholar 

  79. Ravani P, Rossi R, Bonanni A, Quinn RR, Sica F, Bodria M, Pasini A, Montini G, Edefonti A, Belingheri M, De Giovanni D, Barbano G, Degl’Innocenti L, Scolari F, Murer L, Reiser J, Fornoni A, Ghiggeri GM (2015) Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 26(9):2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasa M, Chianca A, Rubis N, Ene-Iordache B, Rudnicki M, Pollastro RM, Capasso G, Pisani A, Pennesi M, Emma F, Remuzzi G, Rituximab in Nephrotic Syndrome of Steroid-Dependent or Frequently Relapsing Minimal Change Disease Or Focal Segmental Glomerulosclerosis Study (NEMO) Study Group (2014) Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol 25(4):850–863

  81. Vivarelli M, Colucci M, Bonanni A, Verzani M, Serafinelli J, Emma F, Ghiggeri G (2017) Ofatumumab in two pediatric nephrotic syndrome patients allergic to rituximab. Pediatr Nephrol 32(1):181–184

    Article  PubMed  Google Scholar 

  82. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335(1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boumpas DT, Chrousos GP, Wilder RL, Cupps TR, Balow JE (1993) Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med 119(12):1198–1208

    Article  CAS  PubMed  Google Scholar 

  84. Herold MJ, McPherson KG, Reichardt HM (2006) Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci 63(1):60–72

    Article  CAS  PubMed  Google Scholar 

  85. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270(5234):286–290

    Article  CAS  PubMed  Google Scholar 

  86. Banuelos J, Lu NZ (2016) A gradient of glucocorticoid sensitivity among helper T cell cytokines. Cytokine Growth Factor Rev 31:27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luther C, Adamopoulou E, Stoeckle C, Brucklacher-Waldert V, Rosenkranz D, Stoltze L, Lauer S, Poeschel S, Melms A, Tolosa E (2009) Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J Immunol 183(2):841–848

    Article  CAS  PubMed  Google Scholar 

  88. Li L, Zhang T, Diao W, Jin F, Shi L, Meng J, Liu H, Zhang J, Zeng CH, Zhang MC, Liang S, Liu Y, Zhang CY, Liu Z, Zen K (2015) Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS. J Am Soc Nephrol 26(9):2183–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lill-Elghanian D, Schwartz K, King L, Fraker P (2002) Glucocorticoid-induced apoptosis in early B cells from human bone marrow. Exp Biol Med (Maywood) 227(9):763–770

    Article  CAS  Google Scholar 

  90. Thaunat O, Koenig A, Leibler C, Grimbert P (2016) Effect of immunosuppressive drugs on humoral allosensitization after kidney transplant. J Am Soc Nephrol 27(7):1890–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cupps TR, Gerrard TL, Falkoff RJ, Whalen G, Fauci AS (1985) Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J Clin Invest 75(2):754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schonenberger E, Ehrich JH, Haller H, Schiffer M (2011) The podocyte as a direct target of immunosuppressive agents. Nephrol Dial Transplant 26(1):18–24

    Article  PubMed  CAS  Google Scholar 

  93. Ransom RF, Lam NG, Hallett MA, Atkinson SJ, Smoyer WE (2005) Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int 68(6):2473–2483

    Article  CAS  PubMed  Google Scholar 

  94. Yu S, Li Y (2013) Dexamethasone inhibits podocyte apoptosis by stabilizing the PI3K/Akt signal pathway. Biomed Res Int 2013:326986

    Google Scholar 

  95. Fassbinder T, Saunders U, Mickholz E, Jung E, Becker H, Schluter B, Jacobi AM (2015) Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res Ther 17:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105(7):2862–2868

    Article  CAS  PubMed  Google Scholar 

  97. Hoyer BF, Moser K, Hauser AE, Peddinghaus A, Voigt C, Eilat D, Radbruch A, Hiepe F, Manz RA (2004) Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med 199(11):1577–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Moysiadis DK, Perysinaki GS, Bertsias G, Stratakis S, Kyriacou K, Nakopoulou L, Boumpas DT, Daphnis E (2012) Early treatment with glucocorticoids or cyclophosphamide retains the slit diaphragm proteins nephrin and podocin in experimental lupus nephritis. Lupus 21(11):1196–1207

    Article  CAS  PubMed  Google Scholar 

  99. Vafadari R, Kraaijeveld R, Weimar W, Baan CC (2013) Tacrolimus inhibits NF-kappaB activation in peripheral human T cells. PLoS One 8(4):e60784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu G, Fan G, Guo G, Kang W, Wang D, Xu B, Zhao J (2016) FK506 attenuates the inflammation in rat spinal cord injury by inhibiting the activation of NF-kappaB in microglia cells. Cell Mol Neurobiol. doi:10.1007/s10571-016-0422-8

    Google Scholar 

  101. Mattila PS (1996) The actions of cyclosporin A and FK506 on T-lymphocyte activation. Biochem Soc Trans 24(1):45–49

    Article  CAS  PubMed  Google Scholar 

  102. De Serres SA, Sayegh MH, Najafian N (2009) Immunosuppressive drugs and Tregs: a critical evaluation! Clin J Am Soc Nephrol 4(10):1661–1669

    Article  CAS  PubMed  Google Scholar 

  103. De Bruyne R, Bogaert D, De Ruyck N, Lambrecht BN, Van Winckel M, Gevaert P, Dullaers M (2015) Calcineurin inhibitors dampen humoral immunity by acting directly on naive B cells. Clin Exp Immunol 180(3):542–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Heidt S, Roelen DL, Eijsink C, Eikmans M, van Kooten C, Claas FH, Mulder A (2010) Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin Exp Immunol 159(2):199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Struijk GH, Minnee RC, Koch SD, Zwinderman AH, van Donselaar-van der Pant KA, Idu MM, ten Berge IJ, Bemelman FJ (2010) Maintenance immunosuppressive therapy with everolimus preserves humoral immune responses. Kidney Int 78(9):934–940

    Article  CAS  PubMed  Google Scholar 

  106. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14(9):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen X, Jiang H, Ying M, Xie Z, Li X, Wang H, Zhao J, Lin C, Wang Y, Feng S, Shen J, Weng C, Lin W, Wang H, Zhou Q, Bi Y, Li M, Wang L, Zhu T, Huang X, Lan HY, Zhou J, Chen J (2016) Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep 6:32087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shengyou Y, Li Y, Zhihong H, Yuanyuan M (2015) Influence of tacrolimus on podocyte injury inducted by angiotensin II. J Renin-Angiotensin-Aldosterone Syst 16(2):260–266

    Article  PubMed  CAS  Google Scholar 

  109. Allison AC (2005) Mechanisms of action of mycophenolate mofetil. Lupus 14[Suppl 1]:s2–s8

    Article  CAS  PubMed  Google Scholar 

  110. Karnell JL, Karnell FG 3rd, Stephens GL, Rajan B, Morehouse C, Li Y, Swerdlow B, Wilson M, Goldbach-Mansky R, Groves C, Coyle AJ, Herbst R, Ettinger R (2011) Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol 187(7):3603–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lv W, Lou J, Zhang Y, Lian P, Qi D, Wang J (2015) Mycophenolate mofetil inhibits hypertrophy and apoptosis of podocyte in vivo and in vitro. Int J Clin Exp Med 8(10):19781–19790

    PubMed  PubMed Central  Google Scholar 

  112. Kemper MJ, Lehnhardt A, Zawischa A, Oh J (2014) Is rituximab effective in childhood nephrotic syndrome? Yes and no. Pediatr Nephrol 29(8):1305–1311

    Article  PubMed  Google Scholar 

  113. Chan CY, Liu ID, Resontoc LP, Ng KH, Chan YH, Lau PY, Than M, Jordan SC, Lam KP, Yeo WS, Yap HK (2016) T lymphocyte activation markers as predictors of responsiveness to rituximab among patients with FSGS. Clin J Am Soc Nephrol 11(8):1360–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Melet J, Mulleman D, Goupille P, Ribourtout B, Watier H, Thibault G (2013) Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum 65(11):2783–2790

    Article  CAS  PubMed  Google Scholar 

  115. van de Veerdonk FL, Lauwerys B, Marijnissen RJ, Timmermans K, Di Padova F, Koenders MI, Gutierrez-Roelens I, Durez P, Netea MG, van der Meer JW, van den Berg WB, Joosten LA (2011) The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis Rheum 63(6):1507–1516

    Article  PubMed  CAS  Google Scholar 

  116. Byng-Maddick R, Ehrenstein MR (2015) The impact of biological therapy on regulatory T cells in rheumatoid arthritis. Rheumatology (Oxford) 54(5):768–775

    Article  CAS  Google Scholar 

  117. Weiner GJ (2010) Rituximab: mechanism of action. Semin Hematol 47(2):115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pateinakis P, Pyrpasopoulou A (2014) CD20+ B cell depletion in systemic autoimmune diseases: common mechanism of inhibition or disease-specific effect on humoral immunity? Biomed Res Int 2014:973609

    Article  PubMed  PubMed Central  Google Scholar 

  119. Crook TR, Souhami RL, McLean AE (1986) Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res 46(10):5029–5034

    CAS  PubMed  Google Scholar 

  120. Maltzman JS, Koretzky GA (2003) Azathioprine: old drug, new actions. J Clin Invest 111(8):1122–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eggleton P, Bremer E (2014) Direct and indirect rituximab-induced T cell depletion: comment on the article by Melet et Al. Arthritis Rheumatol 66(4):1053

    Article  PubMed  Google Scholar 

  122. Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016:4798639

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Vivarelli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colucci, M., Corpetti, G., Emma, F. et al. Immunology of idiopathic nephrotic syndrome. Pediatr Nephrol 33, 573–584 (2018). https://doi.org/10.1007/s00467-017-3677-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3677-5

Keywords

Navigation