Skip to main content
Log in

Altered activity of plasma hemopexin in patients with minimal change disease in relapse

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Since an active isoform of plasma hemopexin (Hx) has been proposed to be a potential effector molecule in minimal change disease (MCD), we tested plasma and urine samples from subjects with MCD in relapse (n =18) or in remission (n =23) (after treatment with prednisolone) for presence or activity of Hx. For comparison, plasma or urine from proteinuric subjects with focal and segmental glomerulosclerosis (FSGS, n =11), membranoproliferative glomerulonephritis (MPGN, n =9), IgA nephropathy (n =5) or healthy control donors (n =10), were incorporated into the study. Electrophoresis and Western blotting methods were used for evaluation of the Hx status, whereas protease activity of Hx was tested upon kidney tissue in vitro according to standard methods. The results show (1) a decreased mean titer of plasma Hx exclusively in MCD relapse subjects as compared with MCD in remission (0.21±0.14 mg/ml vs 0.44±0.06 mg/ml; p <0.01). Mean Hx titers in other proteinuric subjects ranged from 0.38±0.05 mg/ml to 0.40± 0.06 mg/ml, whereas, the mean titer of healthy controls was 0.59±0.03 mg Hx/ml; (2) an increased Hx activity (expressed in arbitrary units) exclusively in plasma from MCD relapse subjects (3.3±0.72 vs 1.16±0.56, MCD remission; p <0.01); (3) different Western blot patterns in MCD relapse vs remission plasma; (4) reduced stainability or virtual absence of the 80-kD Hx band in blots of urine from MCD relapse in contrast to urine samples from other proteinuric subjects with FSGS, MPGN, or IgA nephropathy. It is concluded that Hx in MCD relapse subjects may exist in an altered isoform, showing enhanced protease activity as compared with subjects in remission, subjects with other forms of primary glomerulopathy, or healthy control individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mason PD ( 2003) Minimal change disease and primary focal segmental glomerulosclerosis. In: Johnson RJ, Freehally J (eds) Comprehensive clinical nephrology, 2nd edn. Mosby, New York, pp 271–283

  2. Sahali D, Pawlak A, Valanciute A, Grimbert P, Lang P, Remy P, Bensman A, Guellen G (2002) A novel approach to investigation of the pathogenesis of active minimal-change nephritic syndrome using subtracted cDNA library screening. J Am Soc Nephrol 13:1238–1247

    PubMed  Google Scholar 

  3. Van den Berg JG, Nauta J, Aten J, Claessen N, Stordeur P, Florquin S, Davin JCMA, Weening JJ (2002) A possible role of IL-10 in the pathogenesis of minimal change nephrotic syndrome. J Am Soc Nephrol 13:349A

    Google Scholar 

  4. Ian CI, Chen A, Sum GH, Yu DS, Yen CY, Chen JS, Lin YF (2003) Recurrent minimal change disease post-allograft renal transplant Transplant Proc 35:2888–2890

    Google Scholar 

  5. Savin VJ (1993) Mechanisms of proteinuria in noninflammatory glomerular diseases. Am J Kidney Dis 21:347–362

    PubMed  Google Scholar 

  6. Garin DH (2000) Circulating mediators of proteinuria in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 14:872–878

    Article  PubMed  Google Scholar 

  7. Glassock RJ (2003) Circulating permeability factors in nephrotic syndrome: a fresh look at an old problem J Am Soc Nephrol 14:541–543

    Google Scholar 

  8. Cheung PK, Stulp B, Immenschuh S, Borghuis T, BallerJF, BakkerWW (1999) Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 10:1700–1708

    PubMed  Google Scholar 

  9. Cheung PK, Klok PA, Baller JF, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57:1512–1520

    Article  PubMed  Google Scholar 

  10. Kuzelova K, Mrhalova M, Hrkal Z (1997) Kinetics of heme interaction with heme-binding proteins: the effect of heme aggregation state. Biochim Biophys Acta 1336:497–501

    PubMed  Google Scholar 

  11. Vincent SH, Grady RW, Shaklai N, Snider JM, Muller-Eberhard U (1988) The influence of heme-binding proteins in heme-catalyzed oxidations. Arch Biochem Biophys 265:539–550

    Article  PubMed  Google Scholar 

  12. Kamboh MI, Bunker CH, Nwankwo MU, Ferrell RE (1993) Hemopexin: a unique genetic polymorphism in populations of African ancestry. Hum Biol 65:655–660

    PubMed  Google Scholar 

  13. Kamboh MI, Ferrell RE (1987) Genetic studies of low-abundance human plasma proteins. VI. Polymorphism of hemopexin. Am J Hum Genet 41:645–653

    PubMed  Google Scholar 

  14. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  Google Scholar 

  15. Immenschuh S, Nagae Y, Satoh H, Baumann H, Muller-Eberhard U (1994) The rat and human hemopexin genes contain an identical interleukin-6 response element that is not a target of CAAT enhancer-binding protein isoforms. J Biol Chem 269:12654–12661

    PubMed  Google Scholar 

  16. Immenschuh S, Song DX, Satoh H, Muller-Eberhard U (1995) The type II hemopexin interleukin-6 response element predominates the transcriptional regulation of the hemopexin acute phase responsiveness. Biochem Biophys Res Commun 207:202–208

    Article  PubMed  Google Scholar 

  17. Kapojos JJ, Poelstra K, Borghuis T, Banas B, Bakker WW (2004) Regulation of plasma hemopexin activity by stimulated endothelial or mesangial cells. Nephron Physiol 96:1–10

    Article  Google Scholar 

  18. Bakker WW, Kapojos JJ, van den Berg A, Harmsen MC, Klok PA, Borghuis T (2002) Acute leakage of plasma proteins induced by unilateral perfusion of recombinant hemopexin (r-Hx) into the rat kidney. J Am Soc Nephrol 13:664A

    Google Scholar 

  19. Bakker WW, Borghuis T, Harmsen MC, van den Berg A, Kema IP, Niezen KE, Kapojos JJ (2004) Protease activity of plasma hemopexin. Kidney Int (in press)

  20. Bakker WW, Baller JFW, van Luijk WHJ (1988) Increased vasoactivity and enhanced turnover of a kallikrein-like molecule in plasma from subjects with minimal change disease in relapse versus remission. Contrib Nephrol 67:31–36

    PubMed  Google Scholar 

  21. Orasenneau J, Douet P, Massaoubre C, Lustenberger P, Bernard S (1989) An improved pyrogallol red molybdate method for determining total urinary protein. Clin Chem 35:2233–2236

    PubMed  Google Scholar 

  22. Savin VJ, Sharma R, Lovell HV, Welling DJ ( 1992) Measurement of albumin reflection coefficient using isolated rat glomeruli. J Am Soc Nephrol 3:1260–1269

    PubMed  Google Scholar 

  23. Carraro M, Zennaro C, Artero M, Cardiano G, Ghiggeri GM, Musante L, Sirch C, Bruschi M, Faccini L (2004) The effect of proteinase inhibitors on glomerular albumin permeability induced in vitro by serum from patients with idiopathic focal segmental glomerulosclerosis. Nephrol Dial Transplant 19:1969–1975

    Article  PubMed  Google Scholar 

  24. Kapojos JJ, van den Berg A, van Goor H, Te Loo MWM, Poelstra K, Borghuis T, Bakker WW (2003) Production of hemopexin by TNFα stimulated human mesangium cells. Kidney Int 63:1681–1686

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Kidney Foundation (Grant C01.1964). We thank Mrs. Rianne Jongman for technical assistance and Mr. Siep Norrman for performing the microphotography

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston W. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, W.W., van Dael, C.M.L., Pierik, L.J.W.M. et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 20, 1410–1415 (2005). https://doi.org/10.1007/s00467-005-1936-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-1936-3

Keywords

Navigation