Skip to main content
Log in

Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants’ removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Jun LY, Yon LS, Mubarak NM, Bing CH, Pan S, Danquah MK, Abdullah EC, Khalid M (2019) An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J Environ Chem Eng 7(2):102961

    Article  CAS  Google Scholar 

  2. Deng JB, Wang HF, Zhan HS, Wu CX, Huang Y, Yang B, Mosa A, Ling WT (2022) Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. Chemosphere 301:134753

    Article  CAS  PubMed  Google Scholar 

  3. Zhang CJ, Chen H, Xue G, Liu YB, Chen SP, Jia C (2021) A critical review of the aniline transformation fate in azo dye wastewater treatment. J Clean Prod 321:128971

    Article  CAS  Google Scholar 

  4. Said KAM, Ismail AF, Karim ZA, Abdullah MS, Hafeez A (2021) A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Safe Environ Protect 151:257–289

    Article  Google Scholar 

  5. Liu RT, Zhang W, Wang SS, Xu HJ, Hu Y (2022) Magnetic polyethyleneimine nanoparticles fabricated via ionic liquid as bridging agents for laccase immobilization and its application in phenolic pollutants removal. Molecules 27(23):8522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao X, Gao J, Yang YF, Li HY, Zheng XB, Liu GH, Jiang YJ (2022) Synergistic degradation of chlorophenol pollutants by a photo-enzyme integrated catalyst. J Environ Chem Eng 10(3):107909

    Article  CAS  Google Scholar 

  7. Lou XX, Zhi FK, Sun XY, Wang F, Hou XH, Lv CN, Hu Q (2023) Construction of co-immobilized laccase and mediator based on MOFs membrane for enhancing organic pollutants removal. Chem Eng J 451:138080

    Article  CAS  Google Scholar 

  8. Singh J, Saharan V, Kumar S, Gulati P, Kapoor RK (2018) Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology. Crit Rev Biotechnol 38(6):883–901

    Article  CAS  PubMed  Google Scholar 

  9. Liu GH, Guo LJ, Zhao LF, Zhou LY, Zhang SQ, Liu YT, Zheng XB, Jiang YJ, Gao J, Wang LH (2023) A GO-based biocatalytic membrane prepared by one-step pressure-assisted self-assembly for micropollutants removal. Chem Eng Sci 275:118740

    Article  CAS  Google Scholar 

  10. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235

    Article  CAS  PubMed  Google Scholar 

  11. Lu JW, Nie MF, Li YR, Zhu HL, Shi GY (2022) Design of composite nanosupports and applications thereof in enzyme immobilization: a review. Colloid Surf B-Biointerfaces 217:112602

    Article  CAS  Google Scholar 

  12. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8(2):92

    Article  Google Scholar 

  13. Zhong L, Feng YX, Wang GY, Wang ZY, Bilal M, Lv HX, Jia SR, Cui JD (2020) Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol 152:207–222

    Article  CAS  PubMed  Google Scholar 

  14. Liu DM, Dong C (2020) Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem 92:464–475

    Article  Google Scholar 

  15. Mulinari J, Oliveira JV, Hotza D (2020) Lipase immobilization on ceramic supports: an overview on techniques and materials. Biotechnol Adv 42:107580

    Article  Google Scholar 

  16. Marino MA, Fulaz S, Tasic L (2021) Magnetic nanomaterials as biocatalyst carriers for biomass processing: immobilization strategies, reusability, and applications. Magnetochemistry 7(10):133

    Article  CAS  Google Scholar 

  17. Liu DX, Yang XL, Zhang L, Tang YY, He HJ, Liang MN, Tu ZH, Zhu HX (2022) Immobilization of biomass materials for removal of refractory organic pollutants from wastewater. Int J Environ Res Public Health 19(21):13830

    Article  PubMed  PubMed Central  Google Scholar 

  18. Qiu X, Qin J, Xu M, Kang LF, Hu Y (2019) Organic-inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for laccase immobilization and its application in 2,4-dichlorophenol removal. Colloid Surf B Biointerfaces 179:260–269

    Article  CAS  PubMed  Google Scholar 

  19. Girelli AM, Quattrocchi L, Scuto FR (2021) Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode. J Biotechnol 337:8–17

    Article  CAS  PubMed  Google Scholar 

  20. Qiu X, Wang Y, Xue Y, Li WX, Hu Y (2020) Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chem Eng J 391:123564

    Article  CAS  Google Scholar 

  21. Tarasi R, Alipour M, Gorgannezhad L, Imanparast S, Yousefi-Ahmadipour A, Ramezani A, Ganjali MR, Shafiee A, Faramarzi MA, Khoobi M (2018) Laccase immobilization onto magnetic beta-cyclodextrin-modified chitosan: improved enzyme stability and efficient performance for phenolic compounds elimination. Macromol Res 26(8):755–762

    Article  CAS  Google Scholar 

  22. Zhang K, Yang WZ, Liu Y, Zhang KG, Chen Y, Yin XS (2020) Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct 1220:7

    Article  Google Scholar 

  23. Kim M, Jee SC, Sung JS, Kadam AA (2018) Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes. Int J Biol Macromol 118:228–237

    Article  PubMed  Google Scholar 

  24. Ji C, Hou JW, Chen V (2016) Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: performance, stability, and regeneration. J Membr Sci 520:869–880

    Article  CAS  Google Scholar 

  25. Qiu X, Wang SS, Miao SS, Suo HB, Xu HJ, Hu Y (2021) Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J Hazard Mater 401:123353

    Article  CAS  PubMed  Google Scholar 

  26. Amin R, Khorshidi A, Shojaei AF, Rezaei S, Faramarzi MA (2018) Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int J Biol Macromol 114:106–113

    Article  CAS  PubMed  Google Scholar 

  27. Wu EH, Li YX, Huang Q, Yang ZK, Wei AY, Hu Q (2019) Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere 233:327–335

    Article  CAS  PubMed  Google Scholar 

  28. Cao DL, Cheng WJ, Tao K, Liang YX (2018) Preparation of polydopamine-modified 3D interconnected macroporous silica for laccase immobilization. Macromol Res 26(7):616–622

    Article  CAS  Google Scholar 

  29. Samak NA, Tan YQ, Sui KY, Xia TT, Wang KF, Guo C, Liu CZ (2018) CotA laccase immobilized on functionalized magnetic graphene oxide nano-sheets for efficient biocatalysis. Mol Catal 445:269–278

    Article  CAS  Google Scholar 

  30. Habimana P, Gao J, Mwizerwa JP, Ndayambaje JB, Liu HR, Luan PQ, Ma L, Jiang YJ (2021) Improvement of laccase activity via covalent immobilization over mesoporous silica coated magnetic multiwalled carbon nanotubes for the discoloration of synthetic dyes. ACS Omega 6(4):2777–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rouhani S, Rostami A, Salimi A, Pourshiani O (2018) Graphene oxide/CuFe2O4 nanocomposite as a novel scaffold for the immobilization of laccase and its application as a recyclable nanobiocatalyst for the green synthesis of arylsulfonyl benzenediols. Biochem Eng J 133:1–11

    Article  CAS  Google Scholar 

  32. Yin L, Chen JM, Wu WX, Du ZK, Guan YQ (2021) Immobilization of laccase on magnetic nanoparticles and application in the detoxification of rice straw hydrolysate for the lipid production of rhodotorula glutinis. Appl Biochem Biotechnol 193(4):998–1010

    Article  CAS  PubMed  Google Scholar 

  33. Li ZG, Chen ZM, Zhu QP, Song JJ, Li S, Liu XH (2020) Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes. J Hazard Mater 399:123088

    Article  CAS  PubMed  Google Scholar 

  34. Qiao WC, Zhang ZY, Qian Y, Xu LJ, Guo H (2022) Bacterial laccase immobilized on a magnetic dialdehyde cellulose without cross-linking agents for decolorization. Colloid Surf A Physicochem Eng Asp 632:127818

    Article  CAS  Google Scholar 

  35. Lin JH, Lai QJ, Liu YJ, Chen S, Le XY, Zhou XH (2017) Laccase - methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. Int J Biol Macromol 102:144–152

    Article  CAS  PubMed  Google Scholar 

  36. Mondal S, Malik S, Sarkar R, Roy D, Saha S, Mishra S, Sarkar A, Chatterjee M, Mandal B (2019) Exuberantimmobilization of urease on an inorganic SiO2 support enhances the enzymatic activities by 3-fold for perennial utilization. Bioconjugate Chem 30(1):134–147

    Article  CAS  Google Scholar 

  37. Singh V, Srivastava P, Singh A, Singh D, Malviya T (2016) Polysaccharide-silica hybrids: design and applications. Polym Rev 56(1):113–136

    Article  CAS  Google Scholar 

  38. Wang M, Mohanty SK, Mahendra S (2019) Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems. Accounts Chem Res 52(4):876–885

    Article  CAS  Google Scholar 

  39. Antecka K, Zdarta J, Siwinska-Stefanska K, Sztuk G, Jankowska E, Oleskowicz-Popiel P, Jesionowski T (2018) Synergistic degradation of dye wastewatersu sing binary or ternary oxide systems with immobilized laccase. Catalysts 8(9):402

    Article  Google Scholar 

  40. Huang Y, Li J, Yang YX, Yuan HM, Wei QM, Liu XN, Zhao Y, Ni CY (2019) Characterization of enzyme-immobilized catalytic support and its exploitation for the degradation of methoxychlor in simulated polluted soils. Environ Sci Pollut R 26(27):28328–28340

    Article  CAS  Google Scholar 

  41. Tulek A, Yildirim D, Aydin D, Binay B (2021) Highly-stable Madurella mycetomatis laccase immobilized in silica-coated ZIF-8 nanocomposites for environmentally friendly cotton bleaching process. Colloid Surf B Biointerfaces 202:111672

    Article  CAS  PubMed  Google Scholar 

  42. Bilal M, Ashraf SS, Cui JD, Lou WY, Franco M, Mulla SI, Iqbal HMN (2021) Harnessing the biocatalytic attributes and applied perspectives of nanoengineered laccases-a review. Int J Biol Macromol 166:352–373

    Article  CAS  PubMed  Google Scholar 

  43. Yang YX, Wei QM, Zhang JB, Xi YJ, Yuan HM, Chen C, Liu XN (2015) Degradation of MXC by host/guest-type immobilized laccase on magnetic tubular mesoporous silica. Biochem Eng J 97:111–118

    Article  CAS  Google Scholar 

  44. Chen ZH, Yao J, Ma B, Liu B, Kim J, Li H, Zhu XZ, Zhao CC, Amde M (2022) A robust biocatalyst based on laccase immobilized superparamagnetic Fe3O4@SiO2-NH2 nanoparticles and its application for degradation of chlorophenols. Chemosphere 291:132727

    Article  CAS  PubMed  Google Scholar 

  45. Yu DY, Li ZY, Zhou XA, Wang WN, Wang LQ, Liu TY, Du J (2022) Study on the modification of magnetic graphene oxide and the effect of immobilized lipase. Int J Biol Macromol 216:498–509

    Article  CAS  PubMed  Google Scholar 

  46. Masjoudi M, Golgoli M, Nejad ZG, Sadeghzadeh S, Borghei SM (2021) Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere 263:128043

    Article  CAS  PubMed  Google Scholar 

  47. Xu R, Tang RZ, Zhou QJ, Li FT, Zhang BR (2015) Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes. Chem Eng J 262:88–95

    Article  CAS  Google Scholar 

  48. Mahmoodi NM, Saffar-Dastgerdi MH (2020) Clean Laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): from production to detailed biocatalytic degradation of organic pollutant. Appl Catal B Environ 268:118443

    Article  CAS  Google Scholar 

  49. Qiao WC, Liu H (2019) Enhanced decolorization of malachite green by a magnetic graphene oxide-CotA laccase composite. Int J Biol Macromol 138:1–12

    Article  CAS  PubMed  Google Scholar 

  50. Costa JB, Lima MJ, Sampaio MJ, Neves MC, Faria JL, Morales-Torres S, Tavares APM, Silva CG (2019) Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chem Eng J 355:974–985

    Article  CAS  Google Scholar 

  51. Liao XJ, Fu HM, Yan TT, Lei JP (2019) Electroactive metal-organic framework composites: design and biosensing application. Biosens Bioelectron 146:111743

    Article  CAS  PubMed  Google Scholar 

  52. Zhang YD, Chen GJ, Wu L, Liu K, Zhong H, Long ZY, Tong MM, Yang ZZ, Dai S (2020) Two-in-one: construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO2 fixation. Chem Commun 56(22):3309–3312

    Article  CAS  Google Scholar 

  53. Birhanli E, Noma SAA, Boran F, Ulu A, Yesilada O, Ates B (2022) Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere 292:133382

    Article  CAS  PubMed  Google Scholar 

  54. Samui A, Sahu SK (2018) One-pot synthesis of microporous nanoscale metal organic frameworks conjugated with laccase as a promising biocatalyst. New J Chem 42(6):4192–4200

    Article  CAS  Google Scholar 

  55. Nadar SS, Vaidya L, Rathod VK (2020) Enzyme embedded metal organic framework (enzyme-MOF): De novo approaches for immobilization. Int J Biol Macromol 149:861–876

    Article  CAS  PubMed  Google Scholar 

  56. Pang SL, Wu YW, Zhang XQ, Li BN, Ouyang J, Ding MY (2016) Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochem 51(2):229–239

    Article  CAS  Google Scholar 

  57. Jia YT, Chen YC, Luo J, Hu YY (2019) Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan. Ecotox Environ Safe 184:109670

    Article  CAS  Google Scholar 

  58. Peng J, Wu EH, Lou XX, Deng Q, Hou XH, Lv CN, Hu Q (2021) Anthraquinone removal by a metal-organic framework/polyvinyl alcohol cryogel-immobilized laccase: effect and mechanism exploration. Chem Eng J 418:129473

    Article  CAS  Google Scholar 

  59. Mahmoodi NM, Abdi J (2019) Metal-organic framework as a platform of the enzyme to prepare novel environmentally friendly nanobiocatalyst for degrading pollutant in water. J Ind Eng Chem 80:606–613

    Article  CAS  Google Scholar 

  60. Dong SY, Peng L, Wei WB, Huang TL (2018) Three MOF-templated carbon nanocomposites for potential platforms of enzyme immobilization with improved electrochemical performance. ACS Appl Mater Interfaces 10(17):14665–14672

    Article  CAS  PubMed  Google Scholar 

  61. Bell DJ, Wiese M, Schonberger AA, Wessling M (2020) Catalytically active hollow fiber membranes with enzyme-embedded metal-organic framework coating. Angew Chem Int Edit 59(37):16047–16053

    Article  CAS  Google Scholar 

  62. Li GP, Pang SL, Wu YW, Ouyang J (2018) Enhanced removal of hydroquinone by graphene aerogel-Zr-MOF with immobilized laccase. Chem Eng Commun 205(5):698–705

    Article  CAS  Google Scholar 

  63. Wang D, Lou JF, Yuan JG, Xu J, Zhu RF, Wang Q, Fan XR (2021) Laccase immobilization on core-shell magnetic metal-organic framework microspheres for alkylphenol ethoxylate compound removal. J Environ Chem Eng 9(1):105000

    Article  CAS  Google Scholar 

  64. Bilal M, Zhao YP, Rasheed T, Iqbal HMN (2018) Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int J Biol Macromol 120:2530–2544

    Article  CAS  PubMed  Google Scholar 

  65. Fortes CCS, Daniel-da-Silva AL, Xavier A, Tavares APM (2017) Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions. Chem Eng Process 117:1–8

    Article  CAS  Google Scholar 

  66. Long J, Li XF, Wu ZZ, Xu EB, Xu XM, Jin ZY, Jiao AQ (2015) Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloid Surf A Physicochem Eng Asp 472:69–77

    Article  CAS  Google Scholar 

  67. Chen C, Sun W, Lv HY, Li H, Wang YB, Wang P (2018) Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem Eng J 350:949–959

    Article  CAS  Google Scholar 

  68. Wang L, Shi YX, Chen SX, Wang WC, Tian M, Ning NY, Zhang LQ (2017) Highly efficient mussel-like inspired modification of aramid fibers by uv-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chem Eng J 314:583–593

    Article  CAS  Google Scholar 

  69. Xia TT, Liu CZ, Hu JH, Guo C (2016) Improved performance of immobilized laccase on amine-functioned magnetic Fe3O4 nanoparticles modified with polyethylenimine. Chem Eng J 295:201–206

    Article  CAS  Google Scholar 

  70. Ran F, Zou Y, Xu Y, Liu X, Zhang H (2019) Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water. Chem Eng J 375:121947

    Article  CAS  Google Scholar 

  71. Mehandia S, Sharma SC, Arya SK (2020) Immobilization of laccase on chitosan-clay composite beads to improve its catalytic efficiency to degrade industrial dyes. Mater Today Commun 25:101513

    Article  CAS  Google Scholar 

  72. Taghizadeh T, Talebian-Kiakalaieh A, Jahandar H, Amin M, Tarighi S, Faramarzi MA (2020) Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y. J Hazard Mater 386:121950

    Article  CAS  PubMed  Google Scholar 

  73. Zhang LT, Tang W, Ma TH, Zhou LN, Hui CG, Wang XL, Wang P, Zhang CG, Chen C (2019) Laccase-immobilized tannic acid-mediated surface modification of halloysite nanotubes for efficient bisphenol-a degradation. RSC Adv 9(67):38935–38942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao K, Kang SX, Yang YY, Yu DG (2021) Electrospun functional nanofiber nembrane for antibiotic removal in water: review. Polymers 13(2):226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Latif A, Maqbool A, Zhou RZ, Arsalan M, Sun K, Si YB (2022) Optimized degradation of bisphenol A by immobilized laccase from Trametes versicolor using Box-Behnken design (BBD) and artificial neural network (ANN). J Environ Chem Eng 10(2):107331

    Article  CAS  Google Scholar 

  76. Salimi H, Aryanasab F, Banazadeh AR, Shabanian M, Seidi F (2016) Designing syntheses of cellulose and starch derivatives with basic or cationic N-functions: part I-cellulose derivatives. Polym Adv Technol 27(1):5–32

    Article  CAS  Google Scholar 

  77. Movagharnegad N, Najafi Moghadam P, Nikoo A, Shokri Z (2018) Modification of magnetite cellulose nanoparticles via click reaction for use in controlled drug delivery. Polym-Plast Technol Eng 57(18):1915–1922

    Article  CAS  Google Scholar 

  78. Li N, Xia QY, Li Y, Hou XB, Niu MH, Ping QW, Xiao HN (2018) Immobilizing laccase on modified cellulose/CF beads to degrade chlorinated biphenyl in wastewater. Polymers 10(7):798

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhai R, Chen XX, Jin MJ, Hu JG (2019) Synthesis of a polydopamaine nanoparticle/bacterial cellulose composite for use as a biocompatible matrix for laccase immobilization. Cellulose 26(15):8337–8349

    Article  CAS  Google Scholar 

  80. Shokri Z, Seidi F, Karami S, Li CC, Saeb MR, Xiao HN (2021) Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydr Polym 262:117963

    Article  CAS  PubMed  Google Scholar 

  81. Yavaser R, Karagozler AA (2021) Laccase immobilized polyacrylamide-alginate cryogel: a candidate for treatment of effluents. Process Biochem 101:137–146

    Article  CAS  Google Scholar 

  82. Noreen S, Asgher M, Qamar SA, Bilal M, Iqbal HMN (2022) Poly(vinyl alcohol)-alginate immobilized trametes versicolor IBL-04 laccase as eco-friendly biocatalyst for dyes degradation. Catal Lett 152(6):1869–1879

    Article  CAS  Google Scholar 

  83. Zhang F, Lian MY, Alhadhrami A, Huang MN, Li B, Mersal GAM, Ibrahim MM, Xu MJ (2022) Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv Compos Hybrid Mater 5(3):1852–1864

    Article  CAS  Google Scholar 

  84. Guo H, Lei BS, Yu JW, Chen YF, Qian JQ (2021) Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. Int J Biol Macromol 185:287–296

    Article  CAS  PubMed  Google Scholar 

  85. Shumakovich G, Kurova V, Vasileva I, Pankratov D, Otrokhov G, Morozova O, Yaropolov A (2012) Laccase-mediated synthesis of conducting polyaniline. J Mol Catal B Enzym 77:105–110

    Article  CAS  Google Scholar 

  86. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS (2015) Can laccases catalyze bond cleavage in lignin? Biotechnol Adv 33(1):13–24

    Article  CAS  PubMed  Google Scholar 

  87. Patel SKS, Anwar MZ, Kumar A, Otari SV, Pagolu RT, Kim SY, Kim IW, Lee JK (2018) Fe2O3 yolk-shell particle-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8

    Article  CAS  Google Scholar 

  88. Zeng SQ, Qin XL, Xia LM (2017) Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem Eng J 119:92–100

    Article  CAS  Google Scholar 

  89. Kobakhidze A, Elisashvili V, Corvini PFX, Cvancarova M (2018) Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. New Biotech 43:44–52

    Article  CAS  Google Scholar 

  90. Shao BB, Liu ZF, Zeng GM, Liu Y, Yang X, Zhou CY, Chen M, Liu YJ, Jiang YL, Yan M (2019) Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal. J Hazard Mater 362:318–326

    Article  CAS  PubMed  Google Scholar 

  91. Gu YH, Yuan L, Jia LN, Xue P, Yao HQ (2022) Recent developments of a co-immobilized laccase-mediator system: a review. RSC Adv 12(25):16053–16053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin JH, Wen QL, Chen S, Le XY, Zhou XH, Huang LM (2017) Synthesis of amine-functionalized Fe3O4@C nanoparticles for laccase immobilization. Int J Biol Macromol 96:377–383

    Article  CAS  PubMed  Google Scholar 

  93. Zdarta J, Antecka K, Frankowski R, Zgola-Grzeskowiak A, Ehrlich H, Jesionowski T (2018) The effect of operational parameters on the biodegradation of bisphenols by trametes versicolor laccase immobilized on hippospongia communis spongin scaffolds. Sci Total Environ 615:784–795

    Article  CAS  PubMed  Google Scholar 

  94. Pandi A, Kuppuswami GM, Ramudu KN, Palanivel S (2019) A sustainable approach for degradation of leather dyes by a new fungal laccase. J Clean Prod 211:590–597

    Article  CAS  Google Scholar 

  95. Zhou WT, Zhang WX, Cai YP (2021) Laccase immobilization for water purification: a comprehensive review. Chem Eng J 403:1262721

    Article  Google Scholar 

  96. Chen J, Leng J, Yang XA, Liao LP, Liu LL, Xiao AP (2017) Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules 22(2):221

    Article  PubMed  PubMed Central  Google Scholar 

  97. Patila M, Kouloumpis A, Gournis D, Rudolf P, Stamatis H (2016) Laccase-functionalized graphene oxide assemblies as efficient nanobiocatalysts for oxidation reactions. Sensors 16(3):287

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ulu A, Birhanli E, Boran F, Koytepe S, Yesilada O, Ates B (2020) Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 150:871–884

    Article  CAS  PubMed  Google Scholar 

  99. Wang JY, Yu SY, Feng FJ, Lu L (2019) Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks: recyclable biocatalysts with enhanced stability for dye decolorization. Biochem Eng J 150:107285

    Article  CAS  Google Scholar 

  100. Zhang RZ, Wang L, Han J, Wu JC, Li CM, Ni L, Wang Y (2020) Improving laccase activity and stability by HKUST-1 with cofactor via one pot encapsulation and its application for degradation of bisphenol A. J Hazard Mater 383:10

    Article  Google Scholar 

  101. Fu MH, Xing JF, Ge ZQ (2019) Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. Sci Total Environ 651:2857–2865

    Article  CAS  PubMed  Google Scholar 

  102. Zhang CY, You SP, Liu YD, Wang CY, Yan QS, Qi W, Su RX, He ZM (2020) Construction of luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of bisphenol A. Bioresour Technol 305:123085

    Article  CAS  PubMed  Google Scholar 

  103. Bautista LF, Morales G, Sanz R (2015) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 136:273–280

    Article  CAS  PubMed  Google Scholar 

  104. Varjani S, Rakholiya P, Ng HY, You SM, Teixeira JA (2020) Microbial degradation of dyes: an overview. Bioresour Technol 314:132728

    Article  Google Scholar 

  105. Jankowska K, Ciesielczyk F, Bachosz K, Zdarta J, Kaczorek E, Jesionowski T (2019) Laccase immobilized onto zirconia-Silica hybrid doped with Cu2+ as an effective biocatalytic system for decolorization of dyes. Materials 12(8):1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kashefi S, Borghei SM, Mahmoodi NM (2019) Covalently immobilized laccase onto graphene oxide nanosheets: preparation, characterization, and biodegradation of azo dyes in colored wastewater. J Mol Liq 276:153–162

    Article  CAS  Google Scholar 

  107. Li XP, Wu ZS, Tao XY, Li RZ, Tian DD, Liu XC (2022) Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. J Hazard Mater 438:129525

    Article  CAS  PubMed  Google Scholar 

  108. Liu RT, Wang SL, Han MY, Zhang W, Xu HJ, Hu Y (2022) Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal. Bioprocess Biosyst Eng 45:1955–1966

    Article  CAS  PubMed  Google Scholar 

  109. Mohammadi M, As’habi MA, Salehi P, Yousefi M, Nazari M, Brask J (2018) Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. Int J Biol Macromol 109:443–447

    Article  CAS  PubMed  Google Scholar 

  110. Wang X, Sun SY, Ni ZJ, Li ZX, Bao J (2018) Degradation of polycyclic aromatic hydrocarbons in contaminated soil by immobilized laccase. J Serb Chem Soc 83(5):549–559

    Article  CAS  Google Scholar 

  111. Huber D, Bleymaier K, Pellis A, Vielnascher R, Daxbacher A, Greimel KJ, Guebitz GM (2018) Laccase catalyzed elimination of morphine from aqueous systems. New Biotech 42:19–25

    Article  CAS  Google Scholar 

  112. Zdarta J, Jankowska K, Wyszowska M, Kijenska-Gawronska E, Zgala-Grzeskowiak A, Pinelo M, Meyer AS, Moszynski D, Jesionowski T (2019) Robust biodegradation of naproxen and diclofenac by laccase immobilized using electrospun nanofibers with enhanced stability and reusability. Mater Sci Eng C Mater Biol Appl 103:109189

    Article  Google Scholar 

  113. Wen XF, Zeng ZT, Du CY, Huang DL, Zeng GM, Xiao R, Lai C, Xu P, Zhang C, Wan J, Hu L, Yin LS, Zhou CY, Deng R (2019) Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere 222:865–871

    Article  CAS  PubMed  Google Scholar 

  114. Gu YH, Xue P, Jia F, Shi KR (2019) Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. J Hazard Mater 365:118–124

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22178174), the National Key R&D Program of China (No.2021YFC2103802), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTC2206).

Author information

Authors and Affiliations

Authors

Contributions

WZ, ZZ, LJ were involved in writing-review and editing. BN and YH were involved in supervision and funding acquisition. ZL and RL were involved in figure drawing. WZ, BN and YH were involved in conceptualization. WZ and YH were involved in scope planning.

Corresponding authors

Correspondence to Binbin Nian or Yi Hu.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, Z., Ji, L. et al. Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects. Bioprocess Biosyst Eng 46, 1513–1531 (2023). https://doi.org/10.1007/s00449-023-02907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02907-z

Keywords

Navigation