Skip to main content

Advertisement

Log in

Immobilization of Laccase on Magnetic Nanoparticles and Application in the Detoxification of Rice Straw Hydrolysate for the Lipid Production of Rhodotorula glutinis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of microbial lipid using lignocellulosic agroforestry residues has attracted much attention. But, various inhibitors such as phenols and furans, which are produced during lignocellulosic hydrolysate preparation, are harmful to microbial lipid accumulation. Herein, we developed a novel detoxification strategy of rice straw hydrolysate using immobilized laccase on magnetic Fe3O4 nanoparticles for improving lipid production of Rhodotorula glutinis. Compared with free laccase, the immobilized laccase on magnetic nanoparticles showed better stability, which still retained 76% of original activity at 70 °C and 56% at pH 2 for 6 h. This immobilized laccase was reused to remove inhibitors in acid-pretreated rice straw hydrolysate through recycling with external magnetic field. The results showed that most of phenols, parts of furans, and formic acids could be removed by immobilized laccase after the first batch. Notably, the immobilized laccase exhibited good reusability in repeated batch detoxification. 78.2% phenols, 43.8% furfural, 30.4% HMF, and 16.5% formic acid in the hydrolysate were removed after the fourth batch. Furthermore, these detoxified rice straw hydrolysates, as substrates, were applied to the lipid production of Rhodotorula glutinis. The lipid yield in detoxified hydrolysate was significantly higher than that in undetoxified hydrolysate. These findings suggest that the immobilized laccase on magnetic nanoparticles has a potential to detoxify lignocellusic hydrolysate for improving microbial lipid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2010). Catalytic conversion of biomass to biofuels. Green Chemistry, 12(9), 1493–1513.

    CAS  Google Scholar 

  2. Huang, C., Wu, H., & Liu, Q. P. (2011). Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Journal of Agricultural and Food Chemistry, 59(9), 4606–4613.

    CAS  PubMed  Google Scholar 

  3. Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., & Balan, V. (2014). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33(1), 43–54.

  4. Annamalai, N., Sivakumar, N., & Oleskowicz-Popiel, P. (2018). Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus. Fuel, 217, 420–426.

  5. Tang, B., Lei, P., Xu, Z. Q., Jiang, Y. X., Xu, Z., Liang, J. F., Feng, X. H., & Xu, H. (2015). Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2. Bioresource Technology, 193, 370–376.

    CAS  PubMed  Google Scholar 

  6. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.

    CAS  Google Scholar 

  7. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391.

    CAS  Google Scholar 

  8. Xie, L., Zhao, J., Wu, J., Gao, M., Zhao, Z., Lei, X., Zhao, Y., Yang, W., Gao, X., Ma, C., Liu, H., Wu, F., Wang, X., Zhang, F., Guo, P., & Dai, G. (2015). Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate. Bioresource Technology, 193, 331–336.

    CAS  PubMed  Google Scholar 

  9. Pol, E. C. V. D., Bakker, R. R., Baets, P., & Eggink, G. (2014). By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Applied Microbiology and Biotechnology, 98(23), 9579–9593.

    PubMed  Google Scholar 

  10. Jonsson, L. J., Alriksson, B., & Nilvebrant, N.-O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6, 16.

    PubMed  PubMed Central  Google Scholar 

  11. Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93(1), 1–10.

    CAS  PubMed  Google Scholar 

  12. Nguyen, N., Fargues, C., Guiga, W., & Lameloise, M. L. (2015). Assessing nanofiltration and reverse osmosis for the detoxification of lignocellulosic hydrolysates. Journal of Membrane Science, 487, 40–50.

    CAS  Google Scholar 

  13. Soudham, V. P., Brandberg, T., Mikkola, J. P., & Larsson, C. (2014). Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresource Technology, 166, 559–565.

    CAS  PubMed  Google Scholar 

  14. Kapoor, R. K., Rajan, K., & Carrier, D. J. (2015). Applications of Trametes versicolor crude culture filtrates in detoxification of biomass pretreatment hydrolyzates. Bioresource Technology, 189, 99–106.

    CAS  PubMed  Google Scholar 

  15. Zhang, D., Ong, Y. L., Li, Z., & Wu, J. C. (2013). Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm empty fruit bunch by Enterobacter sp. FDS8. Biochemical Engineering Journal, 72, 77–82.

    CAS  Google Scholar 

  16. Okuda, N., Soneura, M., Ninomiya, K., Katakura, Y., & Shioya, S. (2008). Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. Journal of Bioscience and Bioengineering, 106(2), 128–133.

    CAS  PubMed  Google Scholar 

  17. Morsi, R., Bilal, M., Iqbal, H., & M, N., Ashraf, S, S. (2020). Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Science of the Total Environment, 714, 136572. https://doi.org/10.1016/j.scitotenv.2020.136572.

    Article  CAS  Google Scholar 

  18. Bilal, M., Iqbal, H. M. N., & Barceló, D. (2019). Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues – a review. Science of the Total Environment, 689, 160–177.

    CAS  Google Scholar 

  19. Moreno, A. D., Ibarra, D., Fernández, J. L., & Ballesteros, M. (2012). Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresource Technology, 106, 101–109.

    CAS  PubMed  Google Scholar 

  20. Chandel, A. K., Kapoor, R. K., Singh, A., & Kuhad, R. C. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950.

    CAS  PubMed  Google Scholar 

  21. Ren, S., Li, C., Jiao, X., Jia, S., Jiang, Y., Bilal, M., & Cui, J. (2019). Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal, 373, 1254–1278.

    CAS  Google Scholar 

  22. Bezerra, T. M. D. S., Bassan, J. C., Santos, V. T. D. O., Ferraz, A., & Monti, R. (2015). Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry, 50(3), 417–423.

    CAS  Google Scholar 

  23. Fernández-Fernández, M., Sanromán, M. Á., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31(8), 1808–1825.

    PubMed  Google Scholar 

  24. Xu, R., Chi, C., Li, F., & Zhang, B. (2013). Laccase–polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal. ACS Appled. Materials & Interfaces, 5(23), 12554–12560.

    CAS  Google Scholar 

  25. Pang, R., Li, M., & Zhang, C. (2015). Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta, 131, 38–45.

    CAS  PubMed  Google Scholar 

  26. Bilal, M., Anh Nguyen, T., & Iqbal, H. M. N. (2020). Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization – a paradigm shift in biocatalyst design. Coordination Chemistry Reviews, 422, 213475. https://doi.org/10.1016/j.ccr.2020.213475.

    Article  CAS  Google Scholar 

  27. Shi, L., Ma, F., Han, Y., Zhang, X., & Yu, H. (2014). Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators. Journal of Hazardous Materials, 279, 203–211.

    CAS  PubMed  Google Scholar 

  28. Wang, H., Wei, Z., Zhao, J., Xu, L., Zhou, C., Lin, C., & Wang, L. (2013). Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Industrial & Engineering Chemistry Research, 52(12), 4401–4407.

    CAS  Google Scholar 

  29. Das, A., Singh, J., & Yogalakshmi, K. N. (2017). Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. International Biodeterioration & Biodegradation, 117, 183–189.

    CAS  Google Scholar 

  30. Xia, T. T., Liu, C. Z., Hu, J. H., & Guo, C. (2016). Improved performance of immobilized laccase on amine-functioned magnetic Fe3O4 nanoparticles modified with polyethylenimine. Chemical Engineering Journal, 295, 201–206.

    CAS  Google Scholar 

  31. Yin, L., Ye, J. Y., Kuang, S. B., Guan, Y. Q., & You, R. (2017). Induction, purification, and characterization of a thermo and pH stable laccase from Abortiporus biennis J2 and its application on the clarification of litchi juice. Bioscience, Biotechnology, and Biochemistry, 81(5), 1033–1040.

    CAS  PubMed  Google Scholar 

  32. Lee, K. M., Kalyani, D., Tiwari, M. K., Kim, T. S., Dhiman, S. S., Lee, J. K., & Kim, I. W. (2012). Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresource Technology, 123, 636–645.

    CAS  PubMed  Google Scholar 

  33. Fu, L., Cui, X., Li, Y., Xu, L., Zhang, C., Xiong, R., Zhou, D., & Crittenden, J. C. (2017). Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chemical Engineering Journal, 330, 566–572.

    CAS  Google Scholar 

  34. Gao, R., Hao, Y., Zhang, L., Cui, X., Liu, D., Zhang, M., Tang, Y., & Zheng, Y. (2016). A facile method for protein imprinting on directly carboxyl-functionalized magnetic nanoparticles using non-covalent template immobilization strategy. Chemical Engineering Journal, 284, 139–148.

    CAS  Google Scholar 

  35. Verma, M. L., Chaudhary, R., Tsuzuki, T., Barrow, C. J., & Puri, M. (2013). Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresource Technology, 135, 2–6.

    CAS  PubMed  Google Scholar 

  36. Chen, G., Ma, Y., Su, P., & Fang, B. (2012). Direct binding glucoamylase onto carboxyl- functioned magnetic nanoparticles. Biochemical Engineering Journal, 67, 120–125.

    CAS  Google Scholar 

  37. Zhu, Y. T., Ren, X. Y., Liu, Y. M., Wei, Y., Qing, L. S., & Liao, X. (2014). Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays. Materials Science & Engineering, C: Materials for Biological Applications, 38, 278–285.

    CAS  Google Scholar 

  38. Xiao, A., Xiao, Q., Lin, Y., Ni, H., Zhu, Y., & Cai, H. (2016). Immobilization of agarase from marine vibrio onto carboxyl-functioned magnetic nanoparticles. Journal of Nanoscience and Nanotechnology, 16(9), 10048–10055.

    CAS  Google Scholar 

  39. Moreno, A. D., Ibarra, D., Ballesteros, I., Fernández, J. L., & Ballesteros, M. (2013). Ethanol from laccase-detoxified lignocellulose by the thermotolerant yeast Kluyveromyces marxianus —effects of steam pretreatment conditions, process configurations and substrate loadings. Biochemical Engineering Journal, 79, 94–103.

    CAS  Google Scholar 

  40. Kalyani, D., Dhiman, S. S., Kim, H., Jeya, M., Kim, I. W., & Leeab, J. K. (2012). Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochemistry, 47(4), 671–678.

    CAS  Google Scholar 

  41. De La Torre, M., Martín-Sampedro, R., Fillat, Ú., Eugenio, M. E., Blánquez, A., Hernández, M., Arias, M. E., & Ibarra, D. (2017). Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production. Journal of Industrial Microbiology and Biotechnology, 44(11), 1561–1573.

    Google Scholar 

  42. Saravanakumar, T., Park, H. S., Mo, A. Y., Choi, M. S., Kim, D. H., & Park, S. M. (2016). Detoxification of furanic and phenolic lignocellulose derived inhibitors of yeast using laccase immobilized on bacterial cellulosic nanofibers. Journal of Molecular Catalysis B: Enzymatic, 134, 196–205.

    CAS  Google Scholar 

  43. Wei, Z., Zeng, G., Huang, F., Kosa, M., Sun, Q., Meng, X., Huang, D., & Ragauskas, A. J. (2015). Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 99(17), 7369–7377.

    CAS  PubMed  Google Scholar 

  44. Huang, C., Wu, H., Li, R. F., & Zong, M. H. (2012). Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnology, 29(3), 372–378.

    CAS  PubMed  Google Scholar 

  45. Zhang, G. C., French, W. T., Hernandez, R., Alley, E., & Paraschivescu, M. (2011). Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass and Bioenergy, 35(1), 734–740.

    CAS  Google Scholar 

  46. Huang, X., Wang, Y., Liu, W., & Bao, J. (2011). Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresource Technology, 102, 9705–9709.

    CAS  PubMed  Google Scholar 

  47. Abraham, R. E., Verma, M. L., Barrow, C. J., & Puri, M. (2014). Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnology for Biofuels, 7, 90.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Science and Technology Planning Project of Guangdong Province, China (2015A020212033), and University Student Renovation Training Project from South China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Chen, J., Wu, W. et al. Immobilization of Laccase on Magnetic Nanoparticles and Application in the Detoxification of Rice Straw Hydrolysate for the Lipid Production of Rhodotorula glutinis. Appl Biochem Biotechnol 193, 998–1010 (2021). https://doi.org/10.1007/s12010-020-03465-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03465-w

Keywords

Navigation