Skip to main content
Log in

Preparation of Polydopamine-Modified 3D Interconnected Macroporous Silica for Laccase Immobilization

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Millimeter-sized polydopamine (PDA) modified three-dimensional interconnected macroporous silica (PDA/3DIMS) with high porosity, large pore volume and pore diameter was prepared and used as the support to immobilize commercial laccase (Lac) from Denilite II S. The skeleton of 3DIMS is constructed by silica nanofilm, so the PDA/3DIMS is constructed by PDA/SiO2/PDA sandwich nano-film. The immobilization conditions, incubation time, pH and enzyme concentration were optimized, and the properties of the immobilized laccase were investigated. The enzyme activity of Lac-PDA/3DIMS (295.9 U/g) was higher than that of Lac-3DIMS (222.2 U/g). The stability and reusability of the two immobilized laccases were both improved comparing with the free laccase. Lac-PDA/3DIMS exhibited higher retained activity (73.6%) than Lac-3DIMS (31.8%) after reused for ten times. Lac-PDA/3DIMS retained more than 84.0% initial activity after storage for a month, however, the free laccase and Lac-3DIMS were 7.1% and 48.6%, separately. These advantages revealed that PDA thin layer plays an important role to improve the enzymatic activity of immobilized laccase, and the PDA/3DIMS material is a very promising support for enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. F. Xu, Biochemistry, 35, 7608 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. D. E. Dodor, H. M. Hwang, and S. I. N. Ekunwe, Enzyme Microb. Tech-nol., 35, 210 (2004).

    Article  CAS  Google Scholar 

  3. D. Li, L. Luo, Z. Pang, L. Ding, Q. Wang, H. Ke, F. Huang, and Q. Wei, ACS Appl. Mater. Interfaces, 6, 5144 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. C. S. Rodríguez and J. L. Toca Herrera, Biotechnol. Adv., 24, 500 (2006).

    Article  CAS  Google Scholar 

  5. T. Fukuda, H. Uchida, Y. Takashima, T. Uwajima, T. Kawabata, and M. Suzuki, Biochem. Biophys. Res. Commun., 284, 704 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007).

    Article  CAS  Google Scholar 

  7. H. Qiu, C. Xu, X. Huang, Y. Ding, B. Qu, and P. Gao, J. Phys. Chem. C, 112, 14781 (2008).

    Article  CAS  Google Scholar 

  8. Z. Chi, C. Huang, Y. Zhao, M. Möller, K. Yan, and X. Zhu, Langmuir, 29, 15457 (2013).

    Article  CAS  Google Scholar 

  9. O. Kašpar, V. Tokárová, G. S. Nyanhongo, G. Gübitz, and F. Štěpánek, Food Bioprod. Process., 91, 525 (2013).

    Article  CAS  Google Scholar 

  10. Y. Kawachi, S. I. Kugimiya, H. Nakamura, and K. Kato, Appl. Surf. Sci., 314, 64 (2014).

    Article  CAS  Google Scholar 

  11. J. H. Park, H. Xue, S. J. Jin, and K. Ryu, Korean J. Chem. Eng., 29, 1409 (2012).

    Article  CAS  Google Scholar 

  12. T. Sandu, A. Sarbu, C. M. Damian, and A. Sirkecioglu, React. Funct. Polym., 96, 5 (2015).

    Article  CAS  Google Scholar 

  13. J. Méndez, A. Monteagudo, and K. Griebenow, Bioconjug. Chem., 23, 698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. Pan, Y. J. Sun, X. L. Wang, T. Shi, and Y. L. Zhao, Chinese Chem. Lett., 25, 983 (2014).

    Article  CAS  Google Scholar 

  15. X. Zheng, Q. Wang, Y. Jiang, and J. Gao, Ind. Eng. Chem. Res., 51, 10140 (2012).

    Article  CAS  Google Scholar 

  16. R. Xu, Q. Zhou, F. Li, and B. Zhang, Chem. Eng. J., 222, 321 (2013).

    Article  CAS  Google Scholar 

  17. A. Stein, B. E. Wilson, and S. G. Rudisill, Chem. Soc. Rev., 42, 2763 (2014).

    Article  Google Scholar 

  18. L. Haeshin, B. P. Lee, and P. B. Messersmith, Nature, 448, 338 (2007).

    Article  CAS  Google Scholar 

  19. Y. Cao, X. Zhang, T. Lei, K. Li, Z. Xue, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces, 5, 4438 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. B. Li, T. Liu, L. Hu, Y. Wang, and L. Gao, ACS Sustain. Chem. Eng., 1, 374 (2013).

    Article  CAS  Google Scholar 

  21. D. Spinelli, E. Fatarella, A. Michele, and R. Pogni, Process Biochem., 48, 218 (2013).

    Article  CAS  Google Scholar 

  22. A. Kumari and A. Kayastha, J. Mol. Catal. B-Enzym., 69, 8 (2011).

    Article  CAS  Google Scholar 

  23. J. Talbert and J. Goddard, Colloids Surf. B: Biointerfaces, 93, 8 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. A. G. Martínez, S. Fibikar, I. P. Santos, L. M. Marzán, and L. D. Cola, Angew. Chem. Int. Ed., 48, 1266 (2009).

    Article  CAS  Google Scholar 

  25. B. Yu, J. Liu, S. Liu, and F. Zhou, Chem. Commun., 46, 5900 (2010).

    Article  CAS  Google Scholar 

  26. F. Wang, C. Guo, L. R. Yang, and C. Liu, Bioresour. Technol., 101, 8931 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang, Z. Li, C. Liu, X. Lei, M. Wu, P. Ren, Z. Liu, M. Chen, and G. Xie, Bioresour. Technol., 115, 21 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. M. E. Çorman, N. Öztürk, N. Bereli, S. Akgöl, and A. Denizli, J. Mol. Catal. B-Enzym., 63, 102 (2010).

    Article  CAS  Google Scholar 

  29. B. K. Vaidya, G. C. Ingavle, S. Ponrathnam, B. D. Kulkarnia, and S. N. Nenea, Bioresour. Technol., 99, 3623 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Y. H. Ren, J. G. River, L. H. He, H. Kulkarni, D. K. Lee, and P. B. Messersmith, BMC Biotechnol., 11, 6783 (2011).

    Article  CAS  Google Scholar 

  31. H. Yavuz, G. Bayramoğlu, Y. Kaçar, A. Denizli, and M. Y. Arıca, Biochem. Eng. J., 10, 1 (2002).

    Article  CAS  Google Scholar 

  32. J. Cheng, W. Zhuang, C. L. Tang, Y. Chen, J. L. Wu, T. Guo, H. J. Ying, Bioprocess Biosyst. Eng., 40, 331 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. X. Ran, C. Chi, F. Li, and B. Zhang, ACS Appl. Mater. Interfaces, 5, 12554 (2013).

    Article  CAS  Google Scholar 

  34. Y. Dai, J. Niu, L. Jia, L. Yin, and J. Xu, Bioresour. Technol., 101, 8942 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. P. Sathishkumar, J. C. Chae, A. R. Unnithan, T. Palvannan, H. Y. Kim, K. J. Lee, M. Cho, K. K. Seralathan, and B. T. Oh, Enzyme Microb. Technol., 51, 113 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. M. Sarı, S. Akgöl, M. Karataş, and A. Denizli, Ind. Eng. Chem. Res., 45, 3036 (2006).

    Article  CAS  Google Scholar 

  37. Y. Zhu, S. Kaskel, J. Shi, T. Wage, and K. Pée, Chem. Mater., 19, 6408 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiao Liang.

Additional information

Acknowledgments: This study was financially supported by the Science and Technology Benefiting Projects of Ningbo (Grant No. 2017C50033), the Public Projects of Zhejiang Province (No.2014C31130), and KC Wong Happiness Fund in Ningbo University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Cheng, W., Tao, K. et al. Preparation of Polydopamine-Modified 3D Interconnected Macroporous Silica for Laccase Immobilization. Macromol. Res. 26, 616–622 (2018). https://doi.org/10.1007/s13233-018-6087-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6087-z

Keywords

Navigation