Skip to main content
Log in

Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polyhydroxybutyrate (PHB) is a biodegradable bioplastic that is comparable with many petroleum-based plastics in terms of mechanical properties and is highly biocompatible. Lignocellulosic biomass conversion into PHB can increase profit and add sustainability. Glucose, xylose and arabinose are the main monomer sugars derived from upstream lignocellulosic biomass processing. The sugar mixture ratios may vary greatly depending on the pretreatment and enzymatic hydrolysis conditions. Paraburkholderia sacchari DSM 17165 is a bacterium strain that can convert all three sugars into PHB. In this study, fed-batch mode was applied to produce PHB on three sugar mixtures (glucose:xylose:arabinose = 4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively. The results provide references for process control to maximize PHB production from real sugar streams derived from corn fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ding C, Li M, Hu Y (2018) High-activity production of xylanase by Pichia stipitis: purification, characterization, kinetic evaluation and xylooligosaccharides production. Int J Biol Macromol 117:72–77

    Article  CAS  Google Scholar 

  2. Li M, Eskridge K, Liu E, Wilkins M (2019) Enhancement of polyhydroxybutyrate (PHB) production by 10-fold from alkaline pretreatment liquor with an oxidative enzyme-mediator-surfactant system under Plackett–Burman and central composite designs. Bioresour Technol 281:99–106. https://doi.org/10.1016/j.biortech.2019.02.045

    Article  CAS  PubMed  Google Scholar 

  3. Li M, Marek SM, Peng J, Liu Z, Wilkins MR (2018) Effect of moisture content and inoculum size on cell wall composition and ethanol yield from switchgrass after solid-state Pleurotus ostreatus treatment. Trans ASABE 61(6):1997–2006. https://doi.org/10.13031/trans.12981

    Article  CAS  Google Scholar 

  4. Zhang X, Tang H, Chen G, Qiao L, Li J, Liu B et al (2019) Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur Food Res Technol 20:1–10

    Google Scholar 

  5. Chen Z, Wan C (2017) Co-fermentation of lignocellulose-based glucose and inhibitory compounds for lipid synthesis by Rhodococcus jostii RHA1. Process Biochem 57:159–166

    Article  CAS  Google Scholar 

  6. Yoo CG, Nghiem NP, Kim TH (2016) Production of fermentable sugars from corn fiber using soaking in aqueous ammonia (SAA) pretreatment and fermentation to succinic acid using Escherichia coli AFP184. Korean J Chem Eng 33(10):2863–2868

    Article  Google Scholar 

  7. Li M, Wilkins M (2020) Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. Bioresour Technol 295:122254. https://doi.org/10.1016/j.biortech.2019.122254

    Article  CAS  PubMed  Google Scholar 

  8. Ding C, Wang X, Li M (2019) Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol. Appl Microbiol Biotechnol 20:1–12. https://doi.org/10.1007/s00253-019-09884-y

    Article  CAS  Google Scholar 

  9. Li M (2015) White rot fungi Pleurotus ostreatus pretreatment on switchgrass to enhance enzymatic hydrolysis and ethanol production. Oklahoma State University, Stillwater

    Google Scholar 

  10. Li M, Ekramirad N, Rady A, Adedeji A (2018) Application of acoustic emission and machine learning to detect codling moth infested apples. Trans ASABE 61(3):1157–1164. https://doi.org/10.13031/trans.12548

    Article  Google Scholar 

  11. Li M, Ye R (2017) Edible active packaging for food application: materials and technology. In: Masuelli MA (ed) Biopackaging, 1st edn. CRC Press, Boca Raton, p 1

    Google Scholar 

  12. Karp EM, Donohoe BS, O’Brien MH, Ciesielski PN, Mittal A, Biddy MJ et al (2014) Alkaline pretreatment of corn stover: bench-scale fractionation and stream characterization. ACS Sustain Chem Eng 2(6):1481–1491

    Article  CAS  Google Scholar 

  13. Li M, Wijewardane NK, Ge Y, Xu Z, Wilkins MR (2020) Visible/near infrared spectroscopy and machine learning for predicting polyhydroxybutyrate production cultured on alkaline pretreated liquor from corn stover. Bioresour Technol Rep 9:100386. https://doi.org/10.1016/j.biteb.2020.100386

    Article  Google Scholar 

  14. Li M, Wilkins M (2020) Fed-batch cultivation and adding supplements to increase yields of polyhydroxybutyrate production by Cupriavidus necator from corn stover alkaline pretreatment liquor. Bioresour Technol 299:122676

    Article  CAS  Google Scholar 

  15. Aramvash A, Moazzeni Zavareh F, Gholami BN (2018) Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Eng Life Sci 18(1):20–28

    Article  CAS  Google Scholar 

  16. Li M, Eskridge KM, Wilkins MR (2019) Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C:N ratio). Bioprocess Biosyst Eng 2019:1–12. https://doi.org/10.1007/s00449-019-02146-1

    Article  CAS  Google Scholar 

  17. Li M, Wilkins MR (2020) Recent advances in polyhydroxyalkanoate production: feedstocks, strains and process developments. Int J Biol Macromol 20:20

    CAS  Google Scholar 

  18. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619. https://doi.org/10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  19. Mozumder MSI, Garcia-Gonzalez L, De Wever H, Volcke EIP (2015) Effect of sodium accumulation on heterotrophic growth and polyhydroxybutyrate (PHB) production by Cupriavidus necator. Biores Technol 191:213–218. https://doi.org/10.1016/j.biortech.2015.04.110

    Article  CAS  Google Scholar 

  20. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51(1):13–21

    Article  CAS  Google Scholar 

  21. Gaspar M, Kalman G, Reczey K (2007) Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42(7):1135–1139. https://doi.org/10.1016/j.procbio.2007.04.003

    Article  CAS  Google Scholar 

  22. Bischoff KM, Liu S, Hughes SR, Rich JO (2010) Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotech Lett 32(6):823–828

    Article  CAS  Google Scholar 

  23. Sun X, Li M, Chen Y (2019) Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: a review. Bioresour Technol 2019:122252. https://doi.org/10.1016/j.biortech.2019.122252

    Article  CAS  Google Scholar 

  24. Hori C, Yamazaki T, Ribordy G, Takisawa K, Matsumoto K, Ooi T et al (2019) High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation. J Biosci Bioeng 127(6):721–725. https://doi.org/10.1016/j.jbiosc.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Glaser R, Venus J (2017) Model-based characterisation of growth performance and L-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium. New Biotechnol 37:180–193

    Article  CAS  Google Scholar 

  26. Mozumder MSI, De Wever H, Volcke EIP, Garcia-Gonzalez L (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 49(3):365–373. https://doi.org/10.1016/j.procbio.2013.12.004

    Article  CAS  Google Scholar 

  27. Cesario MT, Raposo RS, De Almeida MCM, Van Keulen F, Ferreira BS, Da Fonseca MMR (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol 31(1):104–113

    Article  CAS  Google Scholar 

  28. Bramer CO, Vandamme P, Da Silva LF, Gomez J, Steinbuchel A (2001) Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51(5):1709–1713

    Article  CAS  Google Scholar 

  29. Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci 111(33):12013–12018

    Article  CAS  Google Scholar 

  30. Stanley A, Kumar HP, Mutturi S, Vijayendra SN (2018) Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain. Appl Biochem Biotechnol 184(3):935–952

    Article  CAS  Google Scholar 

  31. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429. https://doi.org/10.3389/fgene.2014.00429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raposo RS, De Almeida MCM, De Oliveira MdCM, Da Fonseca MM, Cesario MT (2017) A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures. New Biotechnol 34:12–22

    Article  CAS  Google Scholar 

  33. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43(9):892–898

    Article  CAS  Google Scholar 

  34. Zhang H, Han X, Wei C, Bao J (2017) Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans. Biores Technol 224:573–580. https://doi.org/10.1016/j.biortech.2016.11.039

    Article  CAS  Google Scholar 

  35. Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6(1):29–37

    Article  CAS  Google Scholar 

  36. Guaman LP, Barba-Ostria C, Zhang F, Oliveira-Filho ER, Gomez JGC, Silva LF (2018) Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microb Cell Fact 17(1):74

    Article  Google Scholar 

  37. Kang H-Y, Song S, Park C (1998) Priority of pentose utilization at the level of transcription: arabinose, xylose, and ribose operons. Mol Cells 8:3

    Google Scholar 

  38. Lopes MSG, Gosset G, Rocha RCS, Gomez JGC, Da Silva LF (2011) PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari. Curr Microbiol 63(4):319

    Article  CAS  Google Scholar 

  39. Dietrich K, Dumont M-J, Orsat V, Del Rio LF (2019) Consumption of sugars and inhibitors of softwood hemicellulose hydrolysates as carbon sources for polyhydroxybutyrate (PHB) production with Paraburkholderia sacchari IPT 101. Cellulose 20:1–14

    Google Scholar 

  40. Quillaguaman J, Doan-Van T, Guzman H, Guzman D, Martin J, Everest A et al (2008) Poly(3-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture. Appl Microbiol Biotechnol 78(2):227–232. https://doi.org/10.1007/s00253-007-1297-x

    Article  CAS  PubMed  Google Scholar 

  41. Norhafini H, Huong K-H, Amirul AA (2019) High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. Int J Biol Macromol 125:1024–1032. https://doi.org/10.1016/j.ijbiomac.2018.12.121

    Article  CAS  PubMed  Google Scholar 

  42. Silva L, Taciro M, Ramos MM, Carter J, Pradella J, Gomez J (2004) Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31(6):245–254

    Article  CAS  Google Scholar 

  43. Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I (2014) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49(9):1409–1414

    Article  CAS  Google Scholar 

  44. Pan W, Perrotta JA, Stipanovic AJ, Nomura CT, Nakas JP (2012) Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 39(3):459–469

    Article  CAS  Google Scholar 

  45. Keenan TM, Nakas JP, Tanenbaum SW (2006) Polyhydroxyalkanoate copolymers from forest biomass. J Ind Microbiol Biotechnol 33(7):616

    Article  CAS  Google Scholar 

  46. Silva LF, Taciro MK, Raicher G, Piccoli RAM, Mendonca TT, Lopes MSG et al (2014) Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int J Biol Macromol 71:2–7

    Article  CAS  Google Scholar 

  47. Liu E, Li M, Abdella A, Wilkins MR (2020) Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain. Bioresour Technol 305:123038. https://doi.org/10.1016/j.biortech.2020.123038

    Article  CAS  PubMed  Google Scholar 

  48. Lopes MSG, Rocha RCS, Zanotto SP, Gomez JGC, Silva LF (2009) Screening of bacteria to produce polyhydroxyalkanoates from xylose. World J Microbiol Biotechnol 25(10):1751–1756. https://doi.org/10.1007/s11274-009-0072-9

    Article  CAS  Google Scholar 

  49. Jarmander J, Belotserkovsky J, Sjoberg G, Guevara-Martínez M, Perez-Zabaleta M, Quillaguaman J et al (2015) Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli. Microb Cell Fact 14(1):51

    Article  Google Scholar 

  50. Dietrich D, Illman B, Crooks C (2013) Differential sensitivity of polyhydroxyalkanoate producing bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Res Notes 6(1):219

    Article  CAS  Google Scholar 

  51. Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF (2014) Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 41(9):1353–1363

    Article  CAS  Google Scholar 

  52. Berezina N, Yada B, Lefebvre R (2015) From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator. N Biotechnol 32(1):47–53. https://doi.org/10.1016/j.nbt.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  53. Liu Z-H, Xie S, Lin F, Jin M, Yuan JS (2018) Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnol Biofuels 11(1):21

    Article  Google Scholar 

  54. Shi Y, Yan X, Li Q, Wang X, Xie S, Chai L et al (2017) Directed bioconversion of kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242

    Article  CAS  Google Scholar 

  55. Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495–501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Nebraska Agricultural Research Division and the Nebraska Corn Board under contract 88-R-1920-44 for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Wilkins.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wilkins, M.R. Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose. Bioprocess Biosyst Eng 44, 185–193 (2021). https://doi.org/10.1007/s00449-020-02434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02434-1

Keywords

Navigation