Skip to main content
Log in

Polyhydroxyalkanoate copolymers from forest biomass

  • Review
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

The potential for the use of woody biomass in poly-β-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07–0.67% (w/v)]. Yields of poly(β-hydroxybutyrate-co-β-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, M v) from 511–919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (T m) and glass transition temperature (T g) decreased as a function of 3HVcontent, with T m demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25–0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16–52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w/w) PHA contents, and 4–67 mol% 3HV compositions. These data are comparable to copolymer yields and cellular contents reported for hexose plus levulinic acid-based shake-flask cultures, as reported using Alcaligenes eutrophus and Pseudomonas putida. However, our findings presage a conceivable alternative, forestry-based biorefinery approach for the production of value-added biodegradable PHA polymers. Specifically, this review describes the current and potential utilization of lignocellulosic process streams as platform precursors to PHA polymers including hemicellulosic hydrolysates, residual cellulose-derived levulinic acid, tall oil fatty acids (Kraft pulping residual), and lignin-derived aromatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 

Similar content being viewed by others

References

  1. Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14:475–483

    Article  CAS  Google Scholar 

  2. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermomechanical conversion of biomass: a review. Bioresour Technol 79:277–299

    Article  CAS  Google Scholar 

  3. Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882

    Article  Google Scholar 

  4. Bertrand JL, Ramsay BA, Ramsay JA, Chavarie C (1990) Biosynthesis of poly-β-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Appl Environ Microbiol 56:3133–3138

    CAS  Google Scholar 

  5. Bloembergen S, Holden DA, Bluhm TL, Hamer GK, Marchessault RH (1986) Studies of composition and crystallinity of bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2865–2871

    Article  CAS  Google Scholar 

  6. Bloembergen S, Holden DA, Bluhm TL, Hamer GK, Marchessault RH (1989) Isodimorphism in synthetic poly(β-hydroxybutyrate-co-β-hydroxyvalerate): stereoregular copolyesters from racemic β-lactones. Macromolecules 22:1663–1669

    Article  CAS  Google Scholar 

  7. Bluhm TL, Hamer GK, Marchessault RH, Fyfe CA, Veregin RP (1986) Isodimorphism in bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2871–2876

    Article  CAS  Google Scholar 

  8. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239

    Article  Google Scholar 

  9. Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Ability of the photosynthetic bacterium Rhodospirillum rubrum to produce various poly(β-hydroxyalkanoates): potential sources for biodegradable polyester. Int J Biol Macromol 11:49–55

    Article  CAS  Google Scholar 

  10. Brandl H, Gross RA, Lenz RW, Fuller RC (1990) Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93

    CAS  Google Scholar 

  11. Braunegg G, Lefebre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources; physiological and engineering aspects. J Biotechnol 65:127–161

    Article  CAS  Google Scholar 

  12. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250

    Article  CAS  Google Scholar 

  13. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Effect of wood inhibitors released during steam explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206

    Article  CAS  Google Scholar 

  14. Cha JY, Hanna MA (2002) Levulinic acid production based on extrusion and pressurized batch reaction. Ind Crops Prod 16:109–118

    Article  CAS  Google Scholar 

  15. Choi J, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335–342

    Article  CAS  Google Scholar 

  16. Chung SH, Choi GG, Kim HW, Rhee YH (2001) Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. J Microbiol 39:79–82

    CAS  Google Scholar 

  17. Coughlan MP, Hazelwood GP (1993) Hemicellulose and hemicellulases. Portland Press, London

    Google Scholar 

  18. Doi Y (1990) Microbial polyesters. VCH Publishers Inc, Yokohama

    Google Scholar 

  19. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  20. Fitzpatrick S (2006) The Biofine technology: a ‘biorefinery’ concept based thermochemical conversion of cellulosic biomass (Chapter 20). In: Bozell JJ, Patel MK (eds) Feedstocks for the future: renewables for the production of chemicals and materials. Am Chem Soc Symposium Series 921:271–287

  21. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  Google Scholar 

  22. Gomez JGC, Rodrigues MFA, Alli RCP, Torres BB, Bueno Netto CL, Oliveira MS, Silva LF (1996) Evaluation of soil gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Appl Microbiol Biotechnol 45:785–791

    Article  CAS  Google Scholar 

  23. Gorenflo V, Schmack G, Vogel R, Steinbüchel A (2001) Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromol 2:45–57

    Article  CAS  Google Scholar 

  24. Gross RA, DeMello C, Lenz RW, Brandl H, Fuller RC (1989) Biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    Article  CAS  Google Scholar 

  25. Hocking PJ, Marchessault RH (1994) In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Chapman and Hall, London, pp 48–96

  26. Jang JH, Rogers PL (1996) Effect of levulinic acid on cell growth and poly-β-hydroxyalkanoate production by Alcaligenes sp. SH-69. Biotechnol Lett 18:219–224

    Article  CAS  Google Scholar 

  27. Johansson A, Altonen O, Ylinen P (1987) Organosolv pulping-methods and pulp production. Biomass 13:45–65

    Article  CAS  Google Scholar 

  28. Jung IL, Phyo KH, Kim KC, Park HK, Kim IG (2005) Spontaneous liberation of intracellular of polyhydroxybutyrate granules in Escherichia coli. Res Microbiol 156:865–873

    Article  CAS  Google Scholar 

  29. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  Google Scholar 

  30. Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP (2004) Production and characterization of poly-β-hydroxyalkanoate copolymers from B. cepacia utilizing xylose and levulinic acid. Biotechnol Prog 20:1697–1704

    Article  CAS  Google Scholar 

  31. Keenan TM, Tanenbaum SW, Nakas JP (2005) Biodegradable polymers from renewable forest resources. In: Smith R (ed) Biodegradable polymers for industrial applications. CRC Press, Cambridge, pp 219–250

    Google Scholar 

  32. Keenan TM, Tanenbaum SW, Nakas JP (2006) Microbial production of polyhydroxyalkanoates from forestry-based substrates (Chapter 15). In: Bozell JJ, Patel MK (eds) Feedstocks for the future: renewables for the production of chemicals and materials. Am Chem Soc Symposium Series 921:193–209

  33. Kellerhals MB, Kessler B, Witholt B, Tchouboukov A, Brandl H (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33:4690–4698

    Article  CAS  Google Scholar 

  34. Kim Y, Kim DY, Rhee YH (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32:6058–6064

    Article  CAS  Google Scholar 

  35. Kim DY, Kim YB, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28:23–29

    Article  CAS  Google Scholar 

  36. Kim M, Cho KS, Ryu HW, Lee EG, Chang YK (2003) Recovery of poly(3-hydroxybutyrate) from high cell density culture of Ralstonia eutropha by direct addition of sodium dodecyl sulfate. Biotechnol Lett 25:55–59

    Article  CAS  Google Scholar 

  37. Kulesa G (1999) Clean fractionation-inexpensive cellulose for plastics production. http://www.oit.doe.gov/chemicals/factsheets/ch_cellulose.pdf

  38. Larsson S, Reimann A, Nilvebrant N, Jonsson L (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77/79:91–103

    Article  Google Scholar 

  39. Lawford HG, Rousseau JD (1992) Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli. Appl Biochem Biotechnol 34–35:185–204

    Article  Google Scholar 

  40. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  41. Lee SY (1998) Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioproc Eng 18:397–399

    Article  Google Scholar 

  42. Lee SY, Choi JI, Wong HH (1999) Recent advances in polyhydroxyalkanoates production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36

    Article  CAS  Google Scholar 

  43. Lee SH, Oh DH, Ahn WS, Lee Y, Choi J, Lee SY (2000) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244

    Article  CAS  Google Scholar 

  44. Lee SY, Park SJ, Park JP, Lee Y, Lee SH (2003) Economic aspects of biopolymer production. In: Steinbüchel A (ed) Biopolymers, vol 10.Wiley-VCH, New York, pp 307–338

  45. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  46. Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  Google Scholar 

  47. Madison L, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  48. Mai C, Kues U, Mililz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494

    Article  CAS  Google Scholar 

  49. Marangoni C, Furigo A Jr, Aragão GMF (2000) Oleic acid improves poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Ralstonia eutropha in inverted sugar and propionic acid. Biotechnol Lett 22:1635–1638

    Article  CAS  Google Scholar 

  50. Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong, flexible, absorbable biomaterial. Biochem Eng J 16:97–105

    Article  CAS  Google Scholar 

  51. Martinez A, Rodriguez ME, York SW, Preston JE, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536

    Article  CAS  Google Scholar 

  52. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers, and biocompostites: an overview. Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  53. Mussatto SI, Roberto IC (2004) Optimal experimental condition for hemicellulosic hydrolysate treatment with activated charcoal for xylitol production. Biotechnol Prog 20:134–139

    Article  CAS  Google Scholar 

  54. Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates. A biodegradable polymer. Afr J Biotechnol 3:19–24

    Google Scholar 

  55. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    Article  CAS  Google Scholar 

  56. Patnaik PR (2005) Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Crit Rev Biotechnol 25:153–171

    Article  CAS  Google Scholar 

  57. Pepper JM, Steck W (1963) The effect of time and temperature on the hydrogenation of aspen lignin. Can J Chem 41:2867–2875

    Article  CAS  Google Scholar 

  58. Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G (1990) Fermentation of hardwood hemicellulose hydrolysate by Pachysolen tannophilus, Candida shehatae, and Pichia stipitis. J Ind Microbiol 6:157–164

    Article  CAS  Google Scholar 

  59. Rahman MD, Pepper JM (1988) Lignin and related compounds XII. Catalytic degradation of proto and isolated aspen lignins under initially alkaline conditions. J Wood Chem Technol 8:313–322

    Article  CAS  Google Scholar 

  60. Ramsay BA, Ramsay JA, Cooper DG (1989) Production of poly-β-hydroxyalkanoic acid by Pseudomonas cepacia. Appl Environ Microbiol 55:584–589

    CAS  Google Scholar 

  61. Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    CAS  Google Scholar 

  62. Ramsay J, Hassan M, Ramsay B (1995) Hemicellulose as a potential substrate for production of poly (β-hydroxyalkanoates). Can J Microbiol 41:262–266

    Article  CAS  Google Scholar 

  63. Reddy CSK, Ghai R, Rashmi VC, Kalia (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  Google Scholar 

  64. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  CAS  Google Scholar 

  65. Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl Catal B Environ 61:130–139

    Article  CAS  Google Scholar 

  66. Sasaki K, Ikeda S, Nishizawa Y, Hayashi M (1987) Production of 5-aminolevulinic acid by photosynthetic bacteria. J Ferment Technol 65:511–515

    Article  CAS  Google Scholar 

  67. Schmack G, Gorenflo V, Steinbüchel A (1998) Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31:644–649

    Article  CAS  Google Scholar 

  68. Shang L, Yim SC, Park HG, Chang HN (2004) Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction. Biotechnol Prog 20:140–144

    Article  CAS  Google Scholar 

  69. Shishatskaya EI, Volova TG (2004) A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell culture. J Matet Sci Mater Med 15:915–923

    Article  CAS  Google Scholar 

  70. Silva LF, Taciro MK, Michelin Ramos ME, Carter JM, Pradella JGC, Gomez JGC (2004) Poly-3-hydroxybutyrate P(3HB) production by bacteria from xylose, glucose, and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31:245–254

    Article  CAS  Google Scholar 

  71. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  72. Stipanovic AJ, Amidon TE, Scott GM, Barber V, Blowers MK (2006) Hemicellulose from biodelignified wood: a feedstock for renewable materials and chemicals (Chapter 16). In: Bozell JJ, Patel MK (eds) Feedstocks for the future: renewables for the production of chemicals and materials. Am Chem Soc Symposium Series 921:210–221

  73. Strickland RJ, Beck MJ (1984) Effective pretreatments and neutralization methods for ethanol production from acid-catalyzed hardwood hydrolyzates using Pachysolen tannophilus; 6th International Symposium on Alcohol Fuels Technology; Ottawa, Canada

  74. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure, and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1504

    Article  CAS  Google Scholar 

  75. Tatsuki F, Tetsuya Y, Chieko M, Shinya K, Tsutomo H, Takashi K (2004) Polyhydroxyalkanoate, process for preparing same, and resin composition containing the polyhydroxyalkanoate. Patent WO2004037889

  76. Takashi K, Tetsuya Y, Shinya K, Tsutomu H (2004) New PHA comprising unit having (phenylmethyl)oxy structure on side chain thereof. Patent W02004044031

  77. Timell TE (1962) Enzymatic hydrolysis of a 4-O-methylglucuronxylan from the wood of white birch. Sven Papperstidn 65:435–447

    CAS  Google Scholar 

  78. Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    Article  CAS  Google Scholar 

  79. Valentin HE, Schönebaum A, Steinbüchel A (1992) Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 36:507–514

    Article  CAS  Google Scholar 

  80. Van der Waal GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int J Biol Macromol 25:123–128

    Article  Google Scholar 

  81. Vasquez MJ, Garrote G, Alonso JL, Dominquez H, Parajo JC (2005) Refining of autohydrolysis liquors for manufacturing oligosaccharides: evaluation of operational strategies. Bioresour Technol 96:889–896

    Article  CAS  Google Scholar 

  82. Whittaker RH, Likens GE (1975) The biosphere and man. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, Berlin Heidelberg New York, pp 305–328

    Google Scholar 

  83. Williams DF, Miller ND (1987) The degradation of polyhydroxybutyrate (PHB). Adv Biomater 7:471–476

    CAS  Google Scholar 

  84. Yamane T (1992) Cultivation engineering of microbial bioplastics production. FEMS Microbiol Rev 103:257–264

    Article  CAS  Google Scholar 

  85. Young FK, Kastner JR, May SW (1994) Microbial production of poly-β-hydroxybutyric acid from D-xylose and lactose by Pseudomonas cepacia. Appl Environ Microbiol 60:4145–4198

    Google Scholar 

  86. Yue CL, Gross RA, McCarthy SP (1996) Composting studies of poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Polym Degrad Stabil 51:205–210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart W. Tanenbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keenan, T.M., Nakas, J.P. & Tanenbaum, S.W. Polyhydroxyalkanoate copolymers from forest biomass. J IND MICROBIOL BIOTECHNOL 33, 616–626 (2006). https://doi.org/10.1007/s10295-006-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0131-2

Keywords

Navigation