Skip to main content

Advertisement

Log in

On-line identification of fermentation processes for ethanol production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)] (IPCC, Geneva, Switzerland, 2014) URL http://ar5-syr.ipcc.ch/ipcc/ipcc/resources/pdf/IPCC_SynthesisReport.pdf

  2. Duffield JA, Johansson R, Meyer S (2015) US ethanol: An examination of policy, production, use, distribution, and market interactions. Tech. rep., Office of Energy Policy and New Uses. Office of the Chief Economist. US Department of Agriculture. URL https://www.usda.gov/oce/reports/energy/EthanolExamination102015.pdf. Accessed 6 May 2016

  3. Paiano A, Lagioia G (2016) Energy Policy 91:161. doi:10.1016/j.enpol.2015.12.039

    Article  Google Scholar 

  4. Ang CP, Toper B, Gambhir A (2016) Energy Policy 91:273. doi:10.1016/j.enpol.2015.12.015

    Article  Google Scholar 

  5. Pereira MG, Camacho CF, Freitas MAV, Silva NFD (2012) Renewable Sustainable Energy Rev 16(6):3786. doi:10.1016/j.rser.2012.03.024

    Article  Google Scholar 

  6. Chanthawong A, Dhakal S (2016) Energy Policy 91:189. doi:10.1016/j.enpol.2016.01.008

    Article  Google Scholar 

  7. Bacovsky D, Ludwiczek N, Ognissanto M, Wörgetter M (2012) Status of advanced biofuels demonstration facilities in. report t39-p1b. Tech. rep., IEA Bioenergy Task 39. http://bit.ly/1rQ3wPq. Accessed 10 May 2016

  8. RFA, Ethanol industry outlook. Tech. rep., Renewable Fuel Association (2016). URL http://www.ethanolrfa.org/wp-content/uploads/2016/02/RFA_2016_full_final.pdf. Accessed 6 May 2016

  9. Mosier NS, Ileleji KE (2014) Bioenergy: Biomass to Biofuels, 1st edn., chap. How fuel ethanol is made from corn, Academic Press, pp. 379–384

  10. Bothast RJ, Schlicher MA (2005) Appl Microbiol Biotechnol 67(1):19. doi:10.1007/s00253-004-1819-8

    Article  CAS  Google Scholar 

  11. Cardona CA, Sánchez OJ (2007) Bioresour Technol 98(12):2415. doi:10.1016/j.biortech.2007.01.002

    Article  CAS  Google Scholar 

  12. Guo M, Song W, Buhain J (2015) Renewable Sustainable Energy Rev 42:712. doi:10.1016/j.rser.2014.10.013

    Article  CAS  Google Scholar 

  13. Devantier R, Pedersen S, Olsson L (2005) Appl Microbiol Biotechnol 68(5):622. doi:10.1007/s00253-005-1902-9

    Article  CAS  Google Scholar 

  14. Gray SR, Peretti SW, Lamb HH (2013) Biotechnol Bioeng 110(6):1654. doi:10.1002/bit.24849

    Article  CAS  Google Scholar 

  15. Singh V (2012) Biocatal Agric Biotechnol 1(4):353. doi:10.1016/j.bcab.2012.06.001

  16. Wang Y, Chu J, Zhuang Y, Wang Y, Xia J Zhang S (2009) Biotechnol Adv 27(6):989. doi:10.1016/j.biotechadv.2009.05.022

    Article  CAS  Google Scholar 

  17. Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM (2013) PLoS Genet 9(6):1. doi:10.1371/journal.pgen.1003548

    Article  Google Scholar 

  18. Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, S Ruyters (2014) Appl Microbiol Biotechnol 98(22):9483. doi:10.1007/s00253-014-6090-z

    Article  CAS  Google Scholar 

  19. Stephanopoulos G, Reklaitis GV (2011) Chem Eng Sci 66(19):4272. doi:10.1016/j.ces.2011.05.049

    Article  CAS  Google Scholar 

  20. Isermann R, Ballé P (1997) Control Eng Pract 5(5):709. doi:10.1016/S0967-0661(97)00053-1

  21. Locher G, Sonnleitner B, Fiechter A (1992) J Biotechnol 25(1):23. doi:10.1016/0168-1656(92)90108-L

    Article  CAS  Google Scholar 

  22. Pons MN (1993) Curr Opin Biotechnol 4(2):183. doi:10.1016/0958-1669(93)90122-D

    Article  CAS  Google Scholar 

  23. Olsson L, Schulze U, Nielsen J (1998) TrAC. Trends Anal Chem 17(2):88. doi:10.1016/S0165-9936(97)00125-8

    Article  CAS  Google Scholar 

  24. Schügerl K (2001) J Biotechnol 85(2):149. doi:10.1016/S0168-1656(00)

    Article  Google Scholar 

  25. Harms P, Kostov Y, Rao G (2002) Curr Opin Biotechnol 13(2):124. doi:10.1016/S0958-1669(02)00295-1

    Article  CAS  Google Scholar 

  26. Rich RL, Myszka DG (2003) J Mol Recognit 16(6):351. doi:10.1002/jmr.649

    Article  CAS  Google Scholar 

  27. Alford JS, Computers &amp (2006) Chem Eng 30(10–12):1464. doi:10.1016/j.compchemeng.2006.05.039.

    CAS  Google Scholar 

  28. Clementschitsch F, Bayer K (2006) Microb Cell Fact 5(1):1. doi:10.1186/1475-2859-5-19

    Article  Google Scholar 

  29. Vojinović V, Cabral J, Fonseca L (2006) Sens Actuators B 114(2):1083. doi:10.1016/j.snb.2005.07.059

    Article  Google Scholar 

  30. Beutel S, Henkel S (2011) Appl Microbiol Biotechnol 91(6):1493. doi:10.1007/s00253-011-3470-5

    Article  CAS  Google Scholar 

  31. Lourenço ND, Lopes JA, Almeida CF, Sarraguça MC, Pinheiro HM (2012) Anal Bioanal Chem 404(4):1211. doi:10.1007/s00216-012-6073-9

    Article  Google Scholar 

  32. Murthy GS, Johnston DB, Rausch KD, Tumbleson ME, Singh V (2012) Appl Biochem Biotechnol 166(1):87. doi:10.1007/s12010-011-9406-9

    Article  CAS  Google Scholar 

  33. Finn B, Harvey LM, McNeil B (2006) Yeast 23(7):507. doi:10.1002/yea.1371

    Article  CAS  Google Scholar 

  34. Sivakesava S, Irudayaraj J, Demirci A (2001) J Ind Microbiol Biotechnol 26(4):185. doi:10.1038/sj.jim.7000124

    Article  CAS  Google Scholar 

  35. F.G. Bănică (2012) What are Chemical Sensors? Wiley, UK, pp. 1–20. doi:10.1002/9781118354162$4ch1

  36. Bastin G, Dochain D (1990) On-line Estimation and Adaptive Control of Bioreactors. Process Measurement and Control, 1. Elsevier, Amsterdam

    Google Scholar 

  37. Dochain D, Perrier M (1997) Biotreatment, Downstream Processing and Modelling. In: Dynamical modelling, analysis, monitoring and control design for nonlinear bioprocesses, Springer Berlin, Heidelberg pp. 147–197. doi:10.1007/BFb0103032

  38. Fortuna L, Graziani S, Rizzo A, Xibilia MG (2007) Soft Sensors for Monitoring and Control of Industrial Processes. Advances in Industrial Control, Springer-Verlag London. doi:10.1007/978-1-84628-480-9$4

  39. Lennox B, Montague G, Hiden H, Kornfeld G, Goulding P (2001) Biotechnol Bioeng 74(2):125. doi:10.1002/bit.1102

    Article  CAS  Google Scholar 

  40. Lin B, Recke B, Knudsen JK, Jörgensen SB (2007) Computers Chemical Engineering 31(5–6):419. doi:10.1016/j.compchemeng.2006.05.030. Selected Papers from the 15th European Symposium on Computer Aided Process Engineering, Barcelona, Spain, May 29-June 1, 2005.

  41. Kadlec P, Gabrys B, Strandt S (2009), Comput Chem Eng 33(4):795. doi:10.1016/j.compchemeng.2008.12.012

    CAS  Google Scholar 

  42. Assis AJD, Maciel Filho R (2000) Computers Chem Eng 24(2–7):1099. doi:10.1016/S0098-1354(00)00489-0

  43. Yu J (2012) Comput Chem Eng 41:134. doi:10.1016/j.compchemeng.2012.03.004

    CAS  Google Scholar 

  44. Meleiro L, Maciel Filho R (2000) Comput Chem Eng 24(2–7):925. doi:10.1016/S0098-1354(00)80005-8

    CAS  Google Scholar 

  45. Kabbaj N, Polit M, Dahhou B, Roux G (2001), in Emerging Technologies and Factory Automation, 2001. Proceedings. 8th IEEE International Conference on, vol. 2, pp. 669–673. doi:10.1109/ETFA.2001.997754

  46. Ödman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE (2009) J Biotechnol 144(2):102. doi:10.1016/j.jbiotec.2009.08.018

    Article  Google Scholar 

  47. Murthy GS, Rausch KD, Johnston DB, Tumbleson M, Singh V (2011) Industrial. Biotechnology 7:298. doi:10.1089/ind.2011.7.298

    CAS  Google Scholar 

  48. Dai W, Word DP, Hahn J (2014) Control Eng Pract 22:231. doi:10.1016/j.conengprac.2013.01.005

  49. Bluck D, Karbhari PR, Lin WJ (2014). Simulated fermentation process. US Patent 8,818,562. URL https://www.lens.org/lens/patent/US_8818562_B2. US Patent 8,818,562. Accessed 15 Sept 2016

  50. Norkin M, Colome SD (2014) Real-time monitor for wine fermentation. US Patent 8,794,049. https://www.lens.org/lens/patent/US_8794049_B1. US Patent 8,794,049. Accessed 15 Sept 2016

  51. Deyou X (2014) Intelligent monitoring device of fermentation process. CN 204028679 U. https://www.lens.org/lens/patent/CN_204028679_U. Accessed 15 Sept 2016

  52. Discenzo FM (2014) Microbial monitoring and prediction (2014). https://www.lens.org/lens/patent/US_8645076_B2. US Patent 8,645,076 B2. Accessed 16 Sept 2016

  53. Murthy GS, Singh V (2011) Dynamic fermentation controller. US Patent 7,862,992 B2. https://www.lens.org/lens/patent/US_7862992_B2. Accessed 6 June 2016

  54. Bartee JF, Macharia MA, Noll PD, Tay ME (2013) Nonlinear model predictive control of a biofuel fermentation process. US Patent 8,571,690 B2. https://www.lens.org/lens/patent/US_8571690_B2. Accessed 16 Sept 2016

  55. Shanrui D (2016) A intelligent control system of anaerobic fermentation tank for producing fermented feed. CN 205103615 U. https://goo.gl/QAHuu3. Accessed 16 Sept 2016

  56. Shuler M (1985) Chem Eng Commun 36(1–6):161. doi:10.1080/00986448508911252

    Article  CAS  Google Scholar 

  57. Johnson A (1987) Automatica 23(6):691. doi:10.1016/0005-1098(87)90026-4

    Article  Google Scholar 

  58. Kompala DS, Ramkrishna D, Tsao GT (1984) Biotechnol Bioeng 26(11):1272. doi:10.1002/bit.260261103

    Article  CAS  Google Scholar 

  59. Varner J, Ramkrishna D (1999) J Biotechnol 71(1–3):67. doi:10.1016/S0168-1656(99)00016-4

    Article  CAS  Google Scholar 

  60. Ramkrishna D, Kompala DS, Tsao GT (1987) Biotechnol Progr 3(3):121. doi:10.1002/btpr.5420030302

    Article  Google Scholar 

  61. Ochoa S, Yoo A, Repke JU, Wozny G, Yang DR (2007) Biotechnol Progr 23(6):1454. doi:10.1021/bp0702119

    Article  CAS  Google Scholar 

  62. Lee CG, Kim CH, Rhee SK (1992) Bioprocess Eng 7(8):335. doi:10.1007/BF00369488

    Article  CAS  Google Scholar 

  63. Kroumov AD, Módenes AN, Tait MCDA (2006) Biochem Eng J 28(3):243. doi:10.1016/j.bej.2005.11.008

  64. Jang MF, Chou YS (2013) J Chem Technol Biotechnol 88(6):1164. doi:10.1002/jctb.3961

    Article  CAS  Google Scholar 

  65. Altıntaş MM, Kırdar B, Önsan Zİ, Ülgen KÖ (2002) Process Biochem 37(12):1439. doi:10.1016/S0032-9592(02)00031-6

    Article  Google Scholar 

  66. Murthy GS, Johnston DB, Rausch KD, Tumbleson ME, Singh V (2012) Bioprocess Biosyst Eng 35(4):519. doi:10.1007/s00449-011-0625-9

    Article  CAS  Google Scholar 

  67. Anuradha R, Suresh A, Venkatesh K (1999) Process Biochem 35(3–4):367. doi:10.1016/S0032-9592(99)00080-1

    Article  CAS  Google Scholar 

  68. Huang LP, Jin B, Lant P, Zhou J (2005) Biochem Eng J 23(3):265. doi:10.1016/j.bej.2005.01.009

  69. Shen J, Agblevor FA (2010) Appl Biochem Biotechnol 160(3):665. doi:10.1007/s12010-009-8650-8

    Article  CAS  Google Scholar 

  70. van Zyl JM, van Rensburg E, van Zyl WH, Harms TM, Lynd LR (2011) Biotechnol Bioeng 108(4):924. doi:10.1002/bit.23000

    Article  Google Scholar 

  71. Liu D, Xu L, Xiong W, Zhang HT, Lin CC, Jiang L, Xu B (2014) Math Prob Eng. doi:10.1155/2014/289492

  72. Ostergaard S, Olsson L, Nielsen J (2000) Microbiol Mol Biol Rev 64(1):34. doi:10.1128/MMBR.64.1.34-50.2000

    Article  CAS  Google Scholar 

  73. Merritt NR (1966) J Inst Brew 72:374. doi:10.1002/j.2050-0416.1966.tb02977.x

    Article  Google Scholar 

  74. King FG, Hossain MA (1982) Biotechnol Lett 4:531. doi:10.1007/BF00131577

    Article  CAS  Google Scholar 

  75. Rivera EC, Costa AC, Atala DIP, Maugeri F, Maciel MRW, Filho RM (2006) Process Biochem 41(7):1682. doi:10.1016/j.procbio.2006.02.009

    Article  CAS  Google Scholar 

  76. Wang Z, Zhuge J, Fang H, Prior BA (2001) Biotechnol Adv 19(3):201. doi:10.1016/S0734-9750(01)00060-X

    Article  CAS  Google Scholar 

  77. Volpe PLO, Nova Q (1997) 20:528. doi:10.1590/S0100-40421997000500013

  78. Bard Y (1974) Nonlinear parameter estimation. Academic Press, New York

  79. Tjoa IB, Biegler LT (1991) Indus Eng Chem Res 30(2):376. doi:10.1021/ie00050a015

    Article  CAS  Google Scholar 

  80. Kim IW, Liebman M, Edgar T (1991) Comput Chem Eng 15(9):663. doi:10.1016/0098-1354(91)87028-8

    CAS  Google Scholar 

  81. Eberhart R, Kennedy J (1995) In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43. doi:10.1109/MHS.1995.494215

  82. Poli R, Kennedy J, Blackwell T (2007) Swarm. Intelligence 1(1):33. doi:10.1007/s11721-007-0002-0

    Google Scholar 

  83. Prata DM, Schwaab M, Lima EL, Pinto JC (2009) Chem Eng Sci 64(18):3953. doi:10.1016/j.ces.2009.05.028

    Article  CAS  Google Scholar 

  84. Prata DM, Schwaab M, Lima EL, Pinto JC (2010) Chem Eng Sci 65(17):4943. doi:10.1016/j.ces.2010.05.017

    Article  Google Scholar 

  85. MATLAB, version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010)

  86. Liebman M, Edgar T, Lasdon L (1992) Comput Chem Eng 16(10):963. doi:10.1016/0098-1354(92)80030-D

    CAS  Google Scholar 

  87. Robertson DG, Lee JH, Rawlings JB (1996) AlChE J 42(8):2209. doi:10.1002/aic.690420811

    Article  CAS  Google Scholar 

  88. Kvålseth TO (1985) The American Statistician 39(4):279. doi:10.1080/00031305. 10479448

    Google Scholar 

  89. Hoffmann F, Schmidt M, Rinas U (2000) Biotechnol Bioeng 70(3):358. doi:10.1002/1097-0290(20001105)70:3<358::AID-BIT14>3.0.CO;2-T

    Article  CAS  Google Scholar 

  90. Claes EJ, Van Impe FJ (2000) Bioprocess Eng 22(3):195. doi:10.1007/PL00009111

    Article  CAS  Google Scholar 

  91. Van Impe JF (1996) Math Comput Simul 42(2–3):159. doi:10.1016/0378-4754(95)00128-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico, and CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Câmara, M.M., Soares, R.M., Feital, T. et al. On-line identification of fermentation processes for ethanol production. Bioprocess Biosyst Eng 40, 989–1006 (2017). https://doi.org/10.1007/s00449-017-1762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1762-6

Keywords

Navigation