Skip to main content

Advertisement

Log in

Cell mass energetic yields of fed-batch culture by Lipomyces starkeyi

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Estimation of the energy capacity of a microbial cell mass on the basis of its lipid content and elemental composition can be used for the comparative evaluation of different microbial sources of biodiesel. Lipomyces starkeyi cell mass concentration reached 94.6 g/L with 37.4 % of lipids in a fed-batch process using xylose and urea as substrates. The fatty acid composition of the yeast oil was quite similar to that of palm oil. L. starkeyi converted more than 80 % of the energy contained in xylose into cell mass energy yield. The approach used in this study makes it possible to determine the energy of a cell mass by its elemental composition. A heat of combustion (Q c) of 25.7 (kJ/g) was obtained for the cell mass after 142 h of fed-batch cultivation, which represents approximately 56 % of the energy content of diesel oil (45.4 kJ/g). The Q c of the triacylglycerols produced was 48.9 (kJ/g), indicating the potential of this oleaginous yeast for biodiesel production. Our work developed here provides a simple and efficient tool for characterization of this cell mass to further our understanding of its use as a feedstock for bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Minkevich IG, Dedyukhina EG, Chistyakova TI (2010) The effect of lipid content on the elemental composition and energy capacity of yeast biomass. Appl Microbiol Biotechnol 88(3):799–806

    Article  CAS  Google Scholar 

  2. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Tech 113(8):1052–1073

    Article  CAS  Google Scholar 

  3. Gao D, Zeng J, Zheng Y, Yu X, Chen S (2013) Microbial lipid production from xylose by Mortierella isabellina. Bioresour Technol 133:315–321

    Article  CAS  Google Scholar 

  4. Coradini ALV, Anschau A, Vidotti ADS, Reis EM, Xavier MCA, Coelho RS, Franco TT (2015) Microorganism for bioconversion of sugar hydrolysates into lipids. In: Kamm B (ed) Microorganisms in Biorefineries, vol 26., vol Microbiology MonographsSpringer-Verlag, Berlin Heidelberg, pp 51–78

    Google Scholar 

  5. Huang C, Chen XF, Xiong L, Chen XD, Ma LL, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31(2):129–139

    Article  CAS  Google Scholar 

  6. Zhou W, Li Y, Zhang Y, Zhao Z (2012) Energy efficiency evaluation of lipid production by oleaginous yeast Rhodosporidium toruloides. J Therm Anal Calorim 108(1):119–126

    Article  CAS  Google Scholar 

  7. Di Y-Y, Tan Z-C, Sun X-H, Wang M-H, Xu F, Liu Y-F, Sun L-X, Zhang H-T (2004) Low-temperature heat capacity and standard molar enthalpy of formation of 9-fluorenemethanol (C14H12O). J Chem Thermodyn 36(2):79–86

    Article  CAS  Google Scholar 

  8. Akdeniz F, Gundogdu M (2007) Direct and alkali medium liquefaction of Laurocerasus officinalis Roem. Energy Convers Manage 48(1):189–192

    Article  CAS  Google Scholar 

  9. Cordier JL, Butsch BM, Birou B, Vonstockar U (1987) The relationship between elemental composition and heat of combustion of microbial biomass. Appl Microbiol Biotechnol 25(4):305–312

    Article  CAS  Google Scholar 

  10. Minkevich IG, Eroshin VK (1973) Productivity and heat generation of fermentation under oxygen limitation. Folia Microbiol 18(5):376–385

    Article  CAS  Google Scholar 

  11. Erickson LE, Minkevich IG, Eroshin VK (1978) Application of mass and energy balance regularities in fermentation. Biotechnol Bioeng 20(10):1595–1621

    Article  CAS  Google Scholar 

  12. Heijnen JJ, Roels JA (1981) A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol and Bioeng 23(4):739–763

    Article  CAS  Google Scholar 

  13. Eroshin VK, Krylova NI (1983) Efficiency of lipid synthesis by yeasts. Biotechnol Bioeng 25(7):1693–1700

    Article  CAS  Google Scholar 

  14. Patel SA, Erickson LE (1981) Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnol Bioeng 23(9):2051–2067

    Article  CAS  Google Scholar 

  15. Meier D, Larimer DR, Faix O (1986) Direct liquefaction of different lignocellulosics and their constituents.1. Fractionation, elemental composition. Fuel 65(7):910–915

    Article  CAS  Google Scholar 

  16. Tapia EV, Anschau A, Coradini AL, Franco TT, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2(1):64–71

    Article  Google Scholar 

  17. Somogyi M (1945) A new reagent for the determination of sugars. J Biol Chem 160(1):61–68

    CAS  Google Scholar 

  18. Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380

    CAS  Google Scholar 

  19. Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid producing microheterotrophs. J Microbiol Meth 43(2):107–116

    Article  CAS  Google Scholar 

  20. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering Principles and Methodologies. Academic Press, San Diego

    Google Scholar 

  21. Anschau A, Xavier MCA, Hernalsteens S, Franco TT (2014) Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol 157:214–222

    Article  CAS  Google Scholar 

  22. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20(7):155–160

    Article  Google Scholar 

  23. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577

    Article  CAS  Google Scholar 

  24. Wiebe MG, Koivuranta K, Penttila M, Ruohonen L (2012) Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol 12(1):26

    Article  CAS  Google Scholar 

  25. Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl Microbiol Biot 29(2–3):211–218

    CAS  Google Scholar 

  26. Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technol 100(17):3921–3926

    Article  CAS  Google Scholar 

  27. Zhao X, Hu C, Wu S, Shen H, Zhao ZK (2011) Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol 38(5):627–632

    Article  CAS  Google Scholar 

  28. Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48(3):329–335

    CAS  Google Scholar 

  29. Zhang J, Fang XL, Zhu X, Li Y, Xu H, Zhao B, Chen L, Zhang X (2011) Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenerg 35(5):1906–1911

    Article  CAS  Google Scholar 

  30. Liu YF, Meng Z, Zhang FQ, Shan L, Wang XG (2010) Influence of lipid composition, crystallization behavior and microstructure on hardness of palm oil-based margarines. Eur Food Res Technol 230(5):759–767

    Article  CAS  Google Scholar 

  31. Jahic M, Rotticci-Mulder J, Martinelle M, Hult K, Enfors S-O (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst Eng 24(6):385–393

    Article  CAS  Google Scholar 

  32. Shen H, Gong Z, Yang X, Jin G, Bai F, Zhao ZK (2013) Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 168(1):85–89

    Article  CAS  Google Scholar 

  33. Meeuwse P, Tramper J, Rinzema A (2011) Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: validation of the chemostat model using yeast culture data from literature. Bioprocess Biosyst Eng 34(8):951–961

    Article  CAS  Google Scholar 

  34. Tsigie YA, Wang CY, Kasim NS, Diem QD, Huynh LH, Ho QP, Truong CT, Ju YH (2012) Oil production from Yarrowia lipolytica Po1 g using rice bran hydrolysate. J Biomed Biotechnol 2012:378384

    Article  Google Scholar 

  35. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng 16(1):23–33

    Article  CAS  Google Scholar 

  36. Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technol 99(16):7881–7885

    Article  CAS  Google Scholar 

  37. Evans CT, Ratledge C (1984) Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS-14. J Gen Microbiol 130:1705–1710

    CAS  Google Scholar 

  38. Pan JG, Rhee JS (1986) Biomass yields and energetic yields of oleaginous yeasts in batch culture. Biotechnol Bioeng 28(1):112–114

    Article  CAS  Google Scholar 

  39. Pan JG, Rhee JS (1986) Kinetic and energetic analyses of lipid accumulation in batch culture of Rhodotorula glutinis. J Ferment Technol 64(6):557–560

    Article  CAS  Google Scholar 

  40. Pan JG, Rhee JS (1985) Mass and energy balance for analysis of oleaginous yeast growth. Korean J Chem Eng 2(1):81–85

    Article  Google Scholar 

  41. Li YH, Zhao ZB, Bai FW (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41(3):312–317

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support received from Shell Oil Company and the Brazilian scientific agencies: Federal Agency for Support and Evaluation of Graduate Education (CAPES), National Council for Scientific and Technological Development (CNPq) and São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréia Anschau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anschau, A., Franco, T.T. Cell mass energetic yields of fed-batch culture by Lipomyces starkeyi . Bioprocess Biosyst Eng 38, 1517–1525 (2015). https://doi.org/10.1007/s00449-015-1394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1394-7

Keywords

Navigation