Skip to main content
Log in

Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Adult diapause in the bean bug, Riptortus pedestris, is controlled by the photoperiod, which is received by retinal cells in the central region of the compound eyes. To resolve the afferent neural pathways involved in the photoperiodic response, we examine fibre projections from the photoperiodic receptors to the brain and investigate the roles of the posterior optic tract (POT) in the photoperiodic response. Reduced-silver impregnation and synapsin immunolabelling revealed that the medulla was divided into nine strata: the outer layer comprises 4 strata, the inner layer comprises 4 strata and a serpentine layer separates the inner and outer layers. Biotin injection revealed that retinal fibres from the central region of the compound eye terminated in either the central part of the lamina or the central part of the medulla 3rd or 4th layer. Biotin injection into the central part of the medulla labelled 5 distinct afferent pathways: two terminated in a region of ipsilateral anterior protocerebrum, while the other three had contralateral projections. One pathway ran through the POT and connected to the bilateral medulla serpentine layers. When the POT was surgically severed, diapause incidence under short-day conditions was significantly reduced compared to that observed following a sham operation. However, an incision at a posterior part of the medulla and lobula boundary, as a control experiment, did not affect the photoperiodic response. These results suggest that photoperiodic signals from the central region of the compound eye are transferred to neurons with fibres running in the POT for photoperiodic response in R. pedestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

AOT:

Anterior optic tract

AOTU:

Anterior optic tubercle

CA:

Calyces of the mushroom body

CC:

Central complex

CE:

Compound eye

DAT:

Dorsal anterior tract

DT:

Dorsal tract

LA:

Lamina

LO:

Lobula

MB:

Mushroom body

ME:

Medulla

OL:

Optic lobe

PDF:

Pigment-dispersing factor

PLF:

Posterior lateral fibres

POT:

Posterior optic tract

SEZ:

Subesophageal zone

References

  • El Jundi B, Huetteroth W, Kurylas AE, Schachtner J (2009) Anisometric brain dimorphism revisited: implementation of a volumetric 3D standard brain in Manduca sexta. J Comp Neurol 517:210–225

    Article  PubMed  Google Scholar 

  • Fischbach KF, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Article  Google Scholar 

  • Fischbach KF, Lyly-Hünerberg (1983) I. Genetic dissection of the anterior optic tract of Drosophila melanogaster. Cell Tissue Res 231:551–563

    Article  CAS  PubMed  Google Scholar 

  • Goto SG, Shiga S, Numata H (2010) Photoperiodism in insects: perception of light and the role of clock genes. In: Photoperiodism: The biological calendar. Oxford University Press, Oxford, pp 258–286

    Google Scholar 

  • Hamanaka Y, Yasuyama K, Numata H, Shiga S (2005) Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. J Comp Neurol 491:390–399

    Article  PubMed  Google Scholar 

  • Hamanaka Y, Kinoshita M, Homberg U, Arikawa K (2012) Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly, Papilio xuthus. PLoS ONE 7(7):e41109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol 256:415–439

  • Hertel H, Maronde U (1987) Processing of visual information in the honeybee brain. In: Neurobiology and Behavior of Honeybees. Springer, Berlin, pp 141–157

    Chapter  Google Scholar 

  • Homberg U, Hofer S, PfeiVer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430

    Article  PubMed  Google Scholar 

  • Honegger HW, Schürmann FW (1975) Cobalt sulphide staining of optic fibres in the brain of the cricket, Gryllus campestris. Cell Tissue Res 159:213–225

    Article  CAS  PubMed  Google Scholar 

  • Horridge GA (1968) A note on the number of retinula cells of Notonecta. J Comp Phys A 61:259–262

    Google Scholar 

  • Ikeno T, Tanaka SI, Numata H, Goto SG (2010) Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol 8:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeno T, Katagiri C, Numata H, Goto SG (2011a) Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris. Insect Mol Biol 20:409–415

    Article  CAS  PubMed  Google Scholar 

  • Ikeno T, Numata H, Goto SG (2011b) Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biochem Biophys Res Commun 410:394–397

    Article  CAS  PubMed  Google Scholar 

  • Ikeno T, Numata H, Goto SG (2011c) Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol 57:935–938

    Article  CAS  PubMed  Google Scholar 

  • Ikeno T, Ishikawa K, Numata H, Goto SG (2013) Circadian clock gene, Clock, is involved in the photoperiodic response of the bean bug Riptortus pedestris. Physiol Entomol 38:157–162

    Article  CAS  Google Scholar 

  • Ikeno T, Numata H, Goto SG, Shiga S (2014) Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug Riptortus pedestris. J Exp Biol 217:453–462

    Article  CAS  PubMed  Google Scholar 

  • Jander U, Jander R (2002) Allometry and resolution of bee eyes (Apoidea). Arthropod Struct Dev 30:179–193

    Article  PubMed  Google Scholar 

  • Kamano S (1991) Riptortus clavatus (Thunberg) (Bean bug). In: Yushima T, Kamano S, Tamaki Y, editors. Rearing methods of insects. Tokyo: Japan Plant Protection Association, pp 46–49 (in Japanese)

  • Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. J Biol Sci 275:947–954

    Article  Google Scholar 

  • Koštál V, Zavodska R, Denlinger D (2009) Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. J Insect Physiol 55:408–414

    Article  PubMed  Google Scholar 

  • Meinertzhagen IA, Hanson TE (1993) The development of the optic lobe. In: The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, New York, pp 1363–1491

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc Lond 298:309–354

    Article  Google Scholar 

  • Morante J, Desplan C (2004) Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol 15:137–143

    Article  PubMed  Google Scholar 

  • Morita A, Numata H (1997) Distribution of photoperiodic receptors in the compound eyes of the bean bug, Riptortus clavatus. J Comp Phys A 180:181–185

    Article  Google Scholar 

  • Numata H, Hidaka T (1982) Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae). I. Reversible induction and termination of diapause. J Appl Entomol Zool 17:530–538

    Google Scholar 

  • Numata H, Shiga S, Morita A (1997) Photoperiodic receptors in Arthropods. Zool Sci 14:187–197

    Article  Google Scholar 

  • Otsuka N (1962) Histologisch-entwicklungsgeschichtliche Untersuchungen an Mauthnerschen Zellen von Fischen. Z Zellforch Microsk Anat Histochem 58:33–50

    Article  CAS  Google Scholar 

  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neruosci 28:6319–6332

    Article  CAS  Google Scholar 

  • Paulk AC, Dacks AM, Gronenberg W (2009) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456

    Article  PubMed  Google Scholar 

  • Pfeiffer K, Kinoshita M (2012) Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). J Comp Neurol 520:212–229

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2002) Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443:388–400

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886

    Article  PubMed  Google Scholar 

  • Renn SCP, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802

    Article  CAS  PubMed  Google Scholar 

  • Ribi WA (1987) Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus. Cell Tissue Res 247:393–407

    Article  Google Scholar 

  • Ribi WA, Scheel M (1981) The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula. Cell Tissue Res 221:17–43

    Article  CAS  PubMed  Google Scholar 

  • Roth RL, Sokolove PG (1975) Histological evidence for direct connections between the optic lobes of the cockroach Leucophaea maderae. Brain Res 87:23–39

    Article  CAS  PubMed  Google Scholar 

  • Rybak J, Menzel R (1993) Anatomy of the mushroom bodies in the honey bee brain: the neuronal connections of the alpha-lobe. J Comp Neurol 334:444–465

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Uryu O, Tomioka K (2009) The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J Biol Rhythms 24:379–390

    Article  CAS  PubMed  Google Scholar 

  • Salcedo E, Huber A, Henrich S, Chadwell LV, Chou WH, Paulsen R, Britt SG (1999) Blue-and green-absorbing visual pigments of Drosophila: Ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci 19:10716–10726

    CAS  PubMed  Google Scholar 

  • Saunders DS (1984) Photoperiodic time measurement in Sarcophaga argyrostoma: An attempt to use daily temperature cycles to distinguish external from internal coincidence. J Comp Physiol A 154:789–794

    Article  Google Scholar 

  • Saunders DS (2012) Insect photoperiodism: seeing the light. J Physiol Entomol 37:207–218

    Article  Google Scholar 

  • Shiga S, Numata H (2007) Neuroanatomical approaches to the study of insect photoperiodism. Photochem Photobiol 83:76–86

    Article  CAS  PubMed  Google Scholar 

  • Shiga S, Numata H (2009) Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. J Exp Biol 212:867–877

    Article  PubMed  Google Scholar 

  • Shimokawa K, Numata H, Shiga S (2008) Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris. J Comp Physiol A 194:751–762

    Article  Google Scholar 

  • Stark W S (1975) Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in Drosophila. J Comp Physiol 96:343–356

  • Stark WS, Walker JA, Harris WA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol 256:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Stehlík J, Závodská R, Shimada K, Šauman I, Koštál V (2008) Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms 23:129–139

    Article  PubMed  Google Scholar 

  • Strausfeld NJ (1970) Golgi studies on insects. Part II: The optic lobes of Diptera. Philos Trans R Soc Lond B 258:135–223

    Article  CAS  Google Scholar 

  • Strausfeld NJ (1971) The organization of the insect visual system (Light microscopy). Z Zellforsch Mikrosk Anat 121:377–441

    Article  Google Scholar 

  • Strausfeld NJ (1976) Mosaic organization, layers and visual pathways in the insect brain. In: Neural principles in vision. Springer, Berlin, pp 245–279

    Chapter  Google Scholar 

  • Strausfeld NJ, Okamura J (2007) Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J Comp Neurol 500:166–188

    Article  PubMed  Google Scholar 

  • Talarico F, Romeo M, Massolo A, Brandmayr P, Zetto T (2007) Morphometry and eye morphology in three species of Carabus (Coleoptera: Carabidae) in relation to habitat demands. J Zool Syst Evol Res 45:33–38

    Article  Google Scholar 

  • Tamaki S, Takemoto S, Uryu O, Kamae Y, Tomioka K (2013) Opsins are involved in nymphal photoperiodic responses in the cricket Modicogryllus siamensis. J Physiol Entomol 38:163–172

    Article  CAS  Google Scholar 

  • Wada S (1974) Spezielle randzonale ommatidien von Calliphora Erythrocephala meig. (diptera calliphoridae): Architektur der zentralen rhabdomeren-kolumne und topographie im komplexauge. Int J Insect Morphol Embryol 3:397–424

    Article  Google Scholar 

  • Yamaguchi S, Claude D, Martin H (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad Sci U S A 107:5634–5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukizane M, Tomioka K (1995) Neural pathways involved in mutual interactions between optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. J Comp Physiol 176:601–610

    Article  Google Scholar 

  • Yukizane M, Kaneko A, Tomioka K (2002) Electrophysiological and morphological characterization of the medulla bilateral neurons that connect bilateral optic lobes in the cricket, Gryllus bimaculatus. J Insect Physiol 48:631–641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Michiyo Kinoshita from Sokendai for technical advice on biotin staining. This work was supported by a Grant-in Aid for Scientific Research (B), 26292175 by the Japan Society for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakiko Shiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Toyoda, I. & Shiga, S. Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris . Cell Tissue Res 368, 469–485 (2017). https://doi.org/10.1007/s00441-016-2565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2565-9

Keywords

Navigation