Skip to main content
Log in

Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The morphology and functions of the brain neurons projecting to the retrocerebral complex were examined in terms of photoperiodic control of adult diapause in the bean bug, Riptortus pedestris. Backfills through the nervi corporis cardiaci stained 15–20 pairs of somata in the pars intercerebralis (PI) with contralateral axons, and 14–24 pairs in the pars lateralis (PL) with ipsilateral axons to the nervi corporis cardiaci. In the PL, two clusters of somata, PL-d and PL-v, were found. Forwardfills showed neurons in the PI terminated in the aorta, and those in the PL at the corpus cardiacum, corpus allatum, and aorta. Removal of the PI did not cause effects on diapause incidence both under short-day (12 h:12 h, light:dark) and long-day conditions (16 h:8 h, light:dark) at 25°C. Under short-day conditions, diapause incidence was significantly lower than the controls after removal of the PL. Either removal of PL-d or PL-v did not reduce diapause incidence. It decreased only when both the PL-d and PL-v were ablated. The PI is not indispensable for diapause in R. pedestris, and both PL-d and PL-v neurons are suggested to be involved in photoperiodic inhibition of ovarian development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CA:

corpus allatum

CC:

corpus cardiacum

NCA:

nervi corporis allati

NCC:

nervi corporis cardiaci

PI:

pars intercerebralis

PL:

pars lateralis

References

  • Agui N, Granger NA, Gilbert LI, Bollenbacher WE (1979) Cellular localization of the insect prothoracicotropic hormone: in vitro assay of a single neurosecretory cell. Proc Natl Acad Sci USA 76:5694–5698

    Article  PubMed  CAS  Google Scholar 

  • Awasthi VB (1972) Studies on the neurosecretory system and retrocerebral endocrine glands of Nezara viridula Linn. (Heteroptera: Pentatomidae). J Morphol 136:337–352

    Article  PubMed  CAS  Google Scholar 

  • Awasthi VB (1980) Neurosecretion in the milkweed bug, Lygaeus pandurus Scop. (Heteroptera: Lygaeidae). J Hirnforsch 21:169–181

    PubMed  CAS  Google Scholar 

  • Chiang JA, Davey KG (1988) Morphology of neurosecretory cells delineated with cobalt applied extracellularly to the cephalic aorta of the insect Rhodnius prolixus. J Morphol 195:17–29

    Article  Google Scholar 

  • Copenhaver PF, Truman JW (1986) Metamorphosis of the cerebral neuroendocrine system in the moth Manduca sexta. J Comp Neurol 249:186–204

    Article  PubMed  CAS  Google Scholar 

  • Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada, Ottawa

    Google Scholar 

  • Denlinger DL, Yocum GD, Rinehart JP (2005) Hormonal control of diapause. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science: endocrinology. Pergamon Press, Oxford, pp 615–650

    Google Scholar 

  • Hamanaka Y, Numata H, Shiga S (2004) Morphology and electrophysiological properties of neurons projecting to the retrocerebral complex of the blow fly, Protophormia terraenovae. Cell Tissue Res 318:403–418

    Article  PubMed  Google Scholar 

  • Hamanaka Y, Tanaka S, Numata H, Shiga S (2007) Peptide immunocytochemistry of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae. Cell Tissue Res. 329:581–593

    Article  PubMed  Google Scholar 

  • Hodková M (1976) Nervous inhibition of corpora allata by photoperiod in Pyrrhocoris apterus. Nature 263:521–523

    Article  PubMed  Google Scholar 

  • Hodková M (1979) Hormonal and nervous inhibition of reproduction by brain in diapausing females of Pyrrhocoris apterus L. (Hemiptera). Zool Jb Physiol 83:126–136

    Google Scholar 

  • Homberg U, Davis NT, Hildebrand JG (1991) Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth Manduca sexta. J Comp Neurol 303:35–52

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T (1991) Architecture of cerebral neurosecretory cell systems in the silkworm Bombyx mori. J Exp Biol 161:217–237

    Google Scholar 

  • Kamano S (1991) Riptortus clavatus (Thunberg) (Bean bug) (in Japanese). In: Yushima T, Kamano S, Tamaki Y (eds) Rearing methods of insects. Japan Plant Protection Association, Tokyo, pp 46–49

    Google Scholar 

  • Khan MA, Koopmanschap AB, de Kort CAD (1983) The relative importance of neurons and humoral pathways for control of corpus allatum activity in the adult Colorado potato beetle, Leptinotarsa decemlineata (Say). Gen Comp Entomol 52:214–221

    Article  CAS  Google Scholar 

  • Khan MA, Romberg-Privee HM, Koopmanschap AB (1986) Location of allatostatic centers in the pars lateralis regions of the brain of the Colorado potato beetle. Experientia 42:836–838

    Article  Google Scholar 

  • Mizoguchi A, Oka T, Kataoka H, Nagasawa H, Suzuki A, Ishizaki H (1990) Immunohistochemical localization of prothoracicotropic hormone-producing neurosecretory cells in the brain of Bombyx mori. Develop Growth Differ 32:591–598

    Article  Google Scholar 

  • Morita A, Numata H (1997a) Distribution of photoperiodic receptors in the compound eyes of the bean bug, Riptortus clavatus. J Comp Physiol A180:181–185

    Article  Google Scholar 

  • Morita A, Numata H (1997b) Role of neuroendocrine complex in the control of adult diapause in the bean bug, Riptortus clavatus. Arch Insect Biochem Physiol 35:347–355

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR (1981) Transneuronal labeling with horseradish peroxidase in the visual system of the house fly. Brain Res 206:431–438

    Article  PubMed  Google Scholar 

  • Nayer KK (1955) Studies of the neurosecretory system of Iphita limbata Stal. I. Distribution and structure of the neurosecretory cells of the nerve ring. Biol Bull 108:296–307

    Google Scholar 

  • Numata H, Hidaka T (1982) Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae). I. Reversible induction and termination of diapause. Appl Entomol Zool 17:530–538

    Google Scholar 

  • Numata H, Hidaka T (1984) Termination of adult diapause by a juvenile hormone analogue in the bean bug, Riptortus clavatus. Zool Sci 1:751–754

    CAS  Google Scholar 

  • Okuda T, Tanaka S (1997) An allatostatic factor and juvenile hormone synthesis by corpora allata in Locusta migratoria. J Insect Physiol 43:635–641

    Article  PubMed  CAS  Google Scholar 

  • Pipa RL (1978) Locations and central projections of neurons associated with the retrocerebral neuroendocrine complex of the cockroach Periplaneta americana (L.). Cell Tissue Res 193:443–455

    Article  PubMed  CAS  Google Scholar 

  • Poras M (1982) Le contrôle endocrinien de la diapause imaginale des femelles de Tetrix undulata (Sowerby, 1806) (Orthoptere, Tetrigidae). Gen Comp Endocrinol 46:200–210

    Article  PubMed  CAS  Google Scholar 

  • Poras M, Beahr JC, Cassier P (1983) Control of corpus allatum activity during imaginal diapause in females of Locusta migratoria L. Int J Invertebr Reprod 6:111–122

    CAS  Google Scholar 

  • Raabe M (1989) Recent developments in insect neurohormones. Plenum Press, New York

    Google Scholar 

  • Saunders DS (2002) Insect clocks, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Shiga S, Numata H (2000) The role of neurosecretory neurons in the pars intercerebralis and pars lateralis in reproductive diapause of the blowfly, Protophormia terraenovae. Naturwissenschaften 87:125–128

    Article  PubMed  CAS  Google Scholar 

  • Shiga S, Numata H (2007) Neuroanatomical approaches to the study of insect photoperiodism. Photochem Photobiol 83:76–86

    PubMed  CAS  Google Scholar 

  • Shiga S, Toyoda I, Numata H (2000) Neurons projecting to the retrocerebral complex of the adult blow fly, Protophormia terraenovae. Cell Tissue Res 299:427–439

    Article  PubMed  CAS  Google Scholar 

  • Singh YN, Narain R (1984) Studies on the neurosecretory cells, neuroendocrine complex and neuropilar release of neurosecretory material in Aspongopus janus Fabricius (Heteroptera : Pentatomidae). Arch Anat Micros.73:259–267

    Google Scholar 

  • Steel CGH, Lees AD (1977) The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. J Exp Biol 67:117–135

    PubMed  CAS  Google Scholar 

  • Syrová Z, Dolezel D, Šaumann I, Hodkovǎ M (2003) Photoperiodic regulation of diapause in linden bugs: are period and Clock genes involved? Cell Mol Life Sci 60:2510–2515

    Article  PubMed  Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptation of insects. Oxford University Press, New York

    Google Scholar 

  • Vafopoulou X, Steel CGH, Terry KL (2007) Neuroanatomical relations of prothoracicotropic hormone neurons with the circadian timekeeping system in the brain of larval and adult Rhodnius prolixus (Hemiptera). J Comp Neurol 503:511–524

    Article  PubMed  CAS  Google Scholar 

  • Virant-Doberlet M, Horseman G, Loher W, Huber F (1994) Neurons projecting from the brain to the corpora allata in orthopteroid insects: anatomy and physiology. Cell Tissue Res 277:39–50

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, NJ

    Google Scholar 

  • Žitňan D, Kingan TG, Kramer SJ, Beckage NE (1995) Accumulation of neuropeptides in the cerebral neurosecretory system of Manduca sexta larvae parasitized by the braconid wasp Cotesia congregata. J Comp Neurol 356:83–100

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Ken-ichi Yamashita, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, for collecting insects. This work was supported by a Grant-in-Aid for Scientific Research B (16370038) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakiko Shiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimokawa, K., Numata, H. & Shiga, S. Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris . J Comp Physiol A 194, 751–762 (2008). https://doi.org/10.1007/s00359-008-0346-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0346-y

Keywords

Navigation