Skip to main content
Log in

Mapping PERIOD-immunoreactive cells with neurons relevant to photoperiodic response in the bean bug Riptortus pedestris

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Circadian clock genes are involved in photoperiodic responses in many insects; however, there is a lack of understanding in the neural pathways that process photoperiodic information involving circadian clock cells. PERIOD-immunohistochemistry was conducted in the bean bug Riptortus pedestris to localise clock cells and their anatomical relationship with other brain neurons necessary for the photoperiodic response. PERIOD-immunoreactive cells were found in the six brain regions. In the optic lobe, two cell groups called lateral neuron lateral (LNl) and lateral neuron medial (LNm), were labelled anterior medial to the medulla and lobula, respectively. In the protocerebrum of the central brain, dorsal neuron (Prd), posterior neuron (Prp), and antennal lobe posterior neuron (pAL) were found. In the deutocerebrum, antennal lobe local neurons (ALln) were detected. Double immunohistochemistry revealed that PERIOD and serotonin were not co-localised. Furthermore, pigment-dispersing factor-immunoreactive neurons and anterior lobula neurons essential for R. pedestris photoperiodic response were not PERIOD immunopositive. LNl cells were located in the vicinity of the pigment-dispersing factor immunoreactive cells at the anterior base of the medulla. LNm cells were located close to the somata of the anterior lobula neurons. Fibres from the anterior lobula neurons and pigment-dispersing factor-immunoreactive neurons had contacts at the anterior base of the medulla. It is suggested that LNl cells work as clock cells involved in the photoperiodic response and the region at the medulla anterior base serves as a hub to receive photic and clock information relevant to the photoperiodic clock in R. pedestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

Code availability

Material and code availability were written in the Materials and Methods section.

Abbreviations

AL:

Antennal lobe

ALln:

Antennal lobe local neuron

aLO:

Anterior lobula

AME:

Accessory medulla

DN:

Dorsal neuron

-ir:

-Immunoreactive

LNd :

Lateral neuron dorsal

LNl:

Lateral neuron lateral

LNm:

Lateral neuron medial

OL:

Optic lobe

pAL:

Antennal lobe posterior neuron

PBS:

Phosphate-buffered saline

PBST:

Phosphate-buffered saline with Triton X-100

PDF:

Pigment-dispersing factor

PER:

PERIOD

PFA:

Paraformaldehyde

Prd:

Dorsal protocerebrum neuron

Prp:

Posterior protocerebrum neuron

s-LNv :

Small lateral neuron ventral

TRITC:

Tetramethylrhodamine-isothiocyanate

ZT:

Zeitgeber time

References

  • Bajgar A, Jindra M, Dolezel D (2013) Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci USA 11:4416–4421

    Article  Google Scholar 

  • Barbera M, Collantes-Alegre JM, Martínez-Torres D (2017) Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem Mol Biol 83:54–67

    Article  CAS  PubMed  Google Scholar 

  • Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C (2018) Pigment-Dispersing Factor-expressing neurons convey circadian information in the honey bee brain. Open Biol 8:170224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bȕnning E (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  • Curtin KD, Huang ZJ, Rosbash M (1995) Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14:365–372

    Article  CAS  PubMed  Google Scholar 

  • Dolezel D, Zdechovanova L, Sauman I, Hodkova M (2008) Endocrine-dependent expression of circadian clock genes in insects. Cell Mol Life Sci 65:964–969

    Article  CAS  PubMed  Google Scholar 

  • Emerson KJ, Bradshaw WE, Holzapfel CM (2009) Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends Genet 25:217–225

    Article  CAS  PubMed  Google Scholar 

  • Fuchikawa T, Beer K, Linke-Winnebeck C, Ben-David R, Kotowoy A, Tsang VWK, Warman GR, Winnebeck EC, Helfrich-Förster C, Bloch G (2017) Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open Biol 7:170047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamanaka Y, Kinoshita M, Homberg U, Arikawa K (2012) Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly Papilio xuthus. PLoS ONE 7:e41109

    Article  CAS  Google Scholar 

  • Hamanaka Y, Shibasaki H, Kinoshita M, Arikawa K (2013) Neurons innervating the lamina in the butterfly, Papilio xuthus. J Comp Physiol A 199:341–351

    Article  CAS  Google Scholar 

  • Hamanaka Y, Yasuyama K, Numata H, Shiga S (2005) Synaptic connections between pigment-dispersing factor-immunoreactive neurons and neurons in the pars lateralis of the blow fly Protophormia terraenovae. J Comp Neurol 491:390–399

    Article  PubMed  Google Scholar 

  • Helfrich-Förster C (1995) The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci USA 92:612–616

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62:94–102

    Article  PubMed  Google Scholar 

  • Helfrich-Förster, (2018) Sleep in insects. Annu Rev Entomol 63:69–86

    Article  CAS  Google Scholar 

  • Helfrich-Förster, (2020) Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A 206:259–272

    Article  Google Scholar 

  • Homberg U (1991) Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry. J Comp Neurol 303:245–254

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Hildebrand JG (1989) Serotonin immunoreactivity in the optic lobes of the sphinx moth Manduca sexta and colocalization with FMRFamide and SCPB immunoreactivity. J Comp Neurol 288:243–253

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Würden U, Dircksen H, Rao KR (1991) Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357

    Article  Google Scholar 

  • Ikeno T, Numata H, Goto SG, Shiga S (2014) Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris. J Exp Biol 217:453–462

    CAS  PubMed  Google Scholar 

  • Ikeno T, Tanaka SI, Numata H, Goto SG (2010) Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol 8:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaneko H, Head LH, Ling J, Tang X, Liu Y, Hardin PE, Emery P, Hamada FN (2012) Circadian rhythm of temperature preference and its neural control in Drosophila. 22:1851–1857

    CAS  Google Scholar 

  • Kay J, Menegazzi P, Mildner S, Roces F, Helfrich-Förster C (2018) The circadian clock of the ant Camponotus floridanus is localized in dorsal and lateral neurons of the brain. J Biol Rhythms 33:255–271

    Article  CAS  PubMed  Google Scholar 

  • Kotwica-Rolinska J, Pivarciova L, Vaneckova H, Dolezel D (2017) The role of circadian clock genes in the photoperiodic timer of the linden bug Pyrrhocoris apterus during the nymphal stage. Physiol Entomol 42:266–273

    Article  CAS  Google Scholar 

  • Leitinger G, Pabst MA, Kral K (1999) Serotonin-immunoreactive neurones in the visual system of the praying mantis: an immunohistochemical, confocal laser scanning and electron microscopic study. Brain Res 823:11–23

    Article  CAS  PubMed  Google Scholar 

  • Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, Luo DG (2018) Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nat Commun 9:4247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liams SE, Lugena AB, Zhang Y, Hayden AN, Merlin C (2019) Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc Natl Acad Sci USA 116:25214–25221

    Article  CAS  Google Scholar 

  • Meuti ME, Stone M, Ikeno T, Denlinger DL (2015) Functional circadian clock genes are essential for the overwintering diapause of the Northern house mosquito, Culex pipiens. J Exp Biol 218:412–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita A, Soga K, Hoson T, Kamisaka S, Numata H (1999) Changes in mechanical properties of the cuticle and lipid accumulation in relation to adult diapause in the bean bug, Riptortus clavatus. J Insect Physiol 45:241–247

    Article  CAS  PubMed  Google Scholar 

  • Muguruma F, Goto SG, Numata H, Shiga S (2010) Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae. Cell Tissue Res 340:497–507

    Article  PubMed  Google Scholar 

  • Numata H, Hidaka T (1982) Photoperiodic control of adult diapause in the bean bug, Riptortus clavatus Thunberg (Heteroptera: Coreidae). I. Reversible induction and termination of diapause. Appl Entomol Zool 17:530–538

    Article  Google Scholar 

  • Nässel DR (1985) Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. J Comp Neurol 232:190–204

    Article  PubMed  Google Scholar 

  • Omura S, Numata H, Goto SG (2016) Circadian clock regulates photoperiodic responses governed by distinct output pathways in the bean bug, Riptortus pedestris. Biol Rhythm Res 47:937–945

    Article  CAS  Google Scholar 

  • Petri B, Stengl M, Wiirden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282:3–19

    Article  CAS  PubMed  Google Scholar 

  • Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    Article  CAS  PubMed  Google Scholar 

  • Reischig T, Stengl M (2003) Ultrastructure of pigment-dispersing hormone-immunoreactive neurons in a three-dimensional model of the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res 314:421–435

    Article  PubMed  Google Scholar 

  • Sakamoto T, Uryu O, Tomioka K (2009) The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J Biol Rhythms 24:379–390

    Article  CAS  PubMed  Google Scholar 

  • Sauman I, Reppert SM (1996) Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of period protein regulation. Neuron 17:979–990

    Article  Google Scholar 

  • Schlichting M, Menegazzi P, Lelito KR, Yao Z, Buhl E, Benetta ED, Bahle A, Denike J, Hodge JJ, Helfrich-Förster SOT (2016) A neural network underlying circadian entrainment and photoperiodic adjustment of sleep and activity in Drosophila. J Neurosci 36:9084–9096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehadová H, Markova EP, Sehnal F, Takeda M (2004) Distribution of circadian clock-related proteins in the cephalic nervous system of the silkworm Bombyx mori. J Biol Rhythms 19:466–482

    Article  PubMed  CAS  Google Scholar 

  • Shao QM, Sehadova H, Sehnal IN, F, Takeda M, (2006) Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure. J Biol Rhythms 21:118–131

    Article  CAS  PubMed  Google Scholar 

  • Shiga S, Davis NT, Hildebrand JG (2003) Role of Neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol 462:275–285

    Article  PubMed  Google Scholar 

  • Shiga S, Numata H (2000) The role of neurosecretory neurons in the pars intercerebralis and pars lateralis in reproductive diapause of the blowfly, Protophormia terraenovae. Naturwissenschaften 87:125–128

    Article  CAS  PubMed  Google Scholar 

  • Shiga S, Numata H (2009) Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae. J Exp Biol 212:867–877

    Article  PubMed  Google Scholar 

  • Shimokawa K, Numata H, Shiga S (2008) Neurons important for the photoperiodic control of diapause in the bean bug, Riptortus pedestris. J Comp Physiol A 194:751–762

    Article  Google Scholar 

  • Stehlík J, Závodská R, Shimada K, Šauman I, Koštál V (2008) Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata. J Biol Rhythms 23:129–139

    Article  PubMed  CAS  Google Scholar 

  • Stengl M, Arendt A (2016) Peptidergic circadian clock circuits in the Madeira cockroach. Curr Opin Neurobiol 41:44–52

    Article  CAS  PubMed  Google Scholar 

  • Stengl M, Homberg U (1994) Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. J Comp Physiol A 175:203–213

    Article  CAS  PubMed  Google Scholar 

  • Stengl M, Werckenthin A, We HY (2015) How does the circadian clock tick in the Madeiracockroach? Curr Opin Insect Sci 12:38–45

    Article  Google Scholar 

  • Tamai T, Shiga S, Goto SG (2019) Roles of the circadian clock and endocrine regulator in the photoperiodic response of the brown-winged green bug Plautia stali. Physiol Entomol 44:43–52

    Article  CAS  Google Scholar 

  • Vafopoulou X, Terry KL, Steel CGH (2010) The Circadian Timing System in the Brain of the Fifth Larval Instar of Rhodnius prolixus (Hemiptera). J Comp Neurol 518:1264–1282

    CAS  PubMed  Google Scholar 

  • Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG, Bedian V, Emery IF, Siwicki KK (2002) Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 447:366–380

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Toyoda I, Shiga S (2017) Afferent neural pathways from the photoperiodic receptor in the bean bug, Riptortus pedestris. Cell Tissue Res 368:469–485

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partly supported by a Grant-in-Aid from Japan Society for the Promotion of Science, JSPS 26292175 and 18H02478 to S.S.

Author information

Authors and Affiliations

Authors

Contributions

RK performed all experiments except for the specificity test of the serotonin antibody, analysis, designed triple labelling of PER-, PDF- and aLO neurons, and wrote the first manuscript. JX established the PER immunohistochemistry method, obtained an original picture of PER-ir cell location in the brain, the specificity test of the serotonin antibody and performed surface rendering of stained neurons. YH designed and conducted image analysis of the neuronal connections. RK, JX and SS designed the experiments. SS conducted the analysis of the data and wrote the manuscript. All authors read, edited and approved the final manuscript.

Corresponding author

Correspondence to Sakiko Shiga.

Ethics declarations

Ethics approval

This article does not contain any studies on vertebrate animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koide, R., Xi, J., Hamanaka, Y. et al. Mapping PERIOD-immunoreactive cells with neurons relevant to photoperiodic response in the bean bug Riptortus pedestris. Cell Tissue Res 385, 571–583 (2021). https://doi.org/10.1007/s00441-021-03451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03451-6

Keywords

Navigation