Skip to main content
Log in

Cobalt sulphide staining of optic fibres in the brain of the cricket, Gryllus campestris

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Neuronal projections from one optic lobe to other parts of the brain were stained in the cricket Gryllus campestris using the cobalt sulphide technique and Timm's sulphide-silver method.

The results are: Four tracts directly connect the medulla with the lobula and medulla of the contralateral optic lobe. Direct medullar projections end mainly in the non-glomerular neuropile of the protocerebrum, but also penetrate the calyx of the mushroom bodies, pons and central body in small numbers. A few somata which send fibres into the medulla lie in the pars intercerebralis, in the protocerebrum ventral to the opposite β-lobe, the outer margin of the medulla of the contralateral optic lobe and between deutoand tritocerebrum.

The anatomical and physiological relevance of the stained connections is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, L. G., Keehn, D. G., McCann, G. D.: Motion detection by intemeurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31, 509–525 (1968)

    Google Scholar 

  • Brady, J.: The physiology of insect circadian rhythms. Adv. Ins. Physiol. 10, 1–116 (1974)

    Google Scholar 

  • Burtt, E. T., Catton, W. T.: Electrical responses to visual stimulation in the optic lobes of the locust and certain other insects. J. Physiol. (Lond.) 133, 68–88 (1956)

    Google Scholar 

  • Collett, T.: Centripetal and centrifugal visual cells in medulla of the insect optic lobe. J. Neurophysiol. 33, 239–256 (1970)

    Google Scholar 

  • Collett, T.: Visual neurones in the anterior optic tract of the privet hawk moth. J. comp. Physiol. 78, 396–433 (1972)

    Google Scholar 

  • Götz, K. G.: Flight control in the fruitfly Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968)

    Google Scholar 

  • Götz, K. G.: Processing of cues from the moving environment in the Drosophila navigation system. In: R. Wehner (ed.), Information processing in the visual systems of Arthropods p. 225–263. Berlin, Heidelberg, New York: Springer (1972)

    Google Scholar 

  • Goodman, C.: Anatomy of locust ocellar interneurons: Constancy and variability. J. comp. Physiol. 95, 185–201 (1974)

    Google Scholar 

  • Huber, F.: Neural integration (central nervous system). In: M. Rockstein (ed.), The physiology of insecta IV, p. 3–100. New York and London: Acad. Press 1974

    Google Scholar 

  • Jawlowski, H.: Nerve Tracts in bee (Apis mellifica) running from the light and antennal organs to the brain. Ann. Univ. M. Curie-Sklodowska Sect. D 12, 307–322 (1958)

    Google Scholar 

  • Kenyon, F. C.: The brain of the bee. A preliminary contribution to the morphology of the nervous system of Arthropoda. J. comp. Neurol. 6, 133–210 (1896)

    Google Scholar 

  • Mason, C. A.: New features of the brain-retrocerebral neuroendocrine complex of the Locust Schistocerca vaga (Scudder). Z. Zellforsch. 141, 19–32 (1973)

    Google Scholar 

  • McCann, G. D., Dill, J. C.: Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora phaenicia and Musca domestica. J. gen. Physiol. 53, 385–414 (1969)

    Google Scholar 

  • O'Shea, M., Williams, J. L. D.: The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone. J. comp. Physiol. 91, 257–266 (1974)

    Google Scholar 

  • Palka, J.: Discrimination between movements of eye and object by visual interneurones of crickets. J. exp. Biol. 50, 723–732 (1969)

    Google Scholar 

  • Pearson, L.: The corpora pedunculata of Sphinx ligustri (L.) and other Lepidoptera: an anatomical study. Phil. Trans. B 259, 477–516 (1971)

    Google Scholar 

  • Pitman, R. M., Tweedle, C. D., Cohen, M. J.: Branching of central neurons: Intracellular cobalt injection for light and electron microscopy. Science 176, 412–414 (1972)

    Google Scholar 

  • Politoff, A., Pappas, G. D., Bennett, M. V. L.: Cobalt ions cross an electronic synapse if cytoplasmic concentration is low. Brain Res. 76, 343–346 (1974)

    Google Scholar 

  • Power, M. E.: The brain of Drosophila melanogaster. J. Morph. 72, 517–559 (1943)

    Google Scholar 

  • Rowell, C. H. F.: The orthopteran descending movement detector (DMD) neurones: A characterisation and review. Z. vergl. Physiol. 73, 167–194 (1971)

    Google Scholar 

  • Schürmann, F. W.: Über die Struktur der Pilzkörper des Insektenhirns. III. Die Anatomie der Nervenfasern in den Corpora pedunculata bei Acheta domesticus. Z. Zellforsch. 145, 247–285 (1973)

    Google Scholar 

  • Schürmann, F. W.: Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp. Brain Res. 19, 406–432 (1974)

    Google Scholar 

  • Steiger, U.: Über den Feinbau des Neuropils im Corpus pedunculatum der Waldameise. Elektronenoptische Untersuchungen. Z. Zellforsch. 81, 511–536 (1967)

    Google Scholar 

  • Strausfeld, N. J.: Variations and invariants of cell arrangements in the nervous systems of insecta. (A review of neuronal arrangements in the visual system and corpora pedunculata). Verh. dtsch. zool. Ges. 64, 97–108 (1970)

    Google Scholar 

  • Strausfeld, N. J.: Atlas of an insect brain. (In press.) Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Strausfeld, N. J., Blest, A. D.: Golgi studies on insects: Part I. The optic lobes of Lepidoptera. Phil. Trans. B 258, 81–134 (1970)

    Google Scholar 

  • Truman, J. W., Riddiford, L. M.: Hormonal mechanisms underlying insect behaviour. Adv. Ins. Physiol. 10, 297–352 (1974)

    Google Scholar 

  • Tyrer, N. M., Altman, J. S.: Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. J. comp. Neurol. 157, 117–138 (1974)

    Google Scholar 

  • Tyrer, N. M., Bell, E. M.: The intensification of profiles of cobalt-injected neurones in sectioned material. Brain Res. 73, 151–155 (1974)

    Google Scholar 

  • Zawarzin, A.: Histologische Studien über Insekten. IV Die optischen Ganglien der Aeschna- Larven. Z. wiss. Zool. 108, 175–257 (1913)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor B. Rensch on his 75th birthday.

Supported by the Deutsche Forschungsgemeinschaft, grant Ho 463/4+7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honegger, H.W., Schürmann, F.W. Cobalt sulphide staining of optic fibres in the brain of the cricket, Gryllus campestris . Cell Tissue Res. 159, 213–225 (1975). https://doi.org/10.1007/BF00219157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219157

Key words

Navigation