Skip to main content
Log in

Ribosomal RNA gene functioning in avian oogenesis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Despite long-term exploration into ribosomal RNA gene functioning during the oogenesis of various organisms, many intriguing problems remain unsolved. In this review, we describe nucleolus organizer region (NOR) activity in avian oocytes. Whereas oocytes from an adult avian ovary never reveal the formation of the nucleolus in the germinal vesicle (GV), an ovary from juvenile birds possesses both nucleolus-containing and non-nucleolus-containing oocytes. The evolutionary diversity of oocyte NOR functioning and the potential non-rRNA-related functions of the nucleolus in oocytes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arronet VN (1973) Morphological changes of nucleolar structure in the oogenesis of reptiles (Lacertidae, Agamidae). J Herpetol 7:163–193

    Article  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012) The nucleolar detention pathway: a cellular strategy for regulating molecular networks. Cell Cycle 11:2059–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auer H, Mayr B, Lambrou M, Schleger W (1987) An extended chicken karyotype, including the NOR chromosome. Cytogenet Cell Genet 45:218–221

    Article  CAS  PubMed  Google Scholar 

  • Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087

    Article  CAS  PubMed  Google Scholar 

  • Baum JS, St George JP, McCall K (2005) Programmed cell death in the germline. Semin Cell Dev Biol 16:245–259

    Article  CAS  PubMed  Google Scholar 

  • Bellairs R (1965) The relationship between oocyte and follicle in the hen’s ovary as shown by electron microscopy. J Embryol Exp Morphol 13:215–233

    CAS  PubMed  Google Scholar 

  • Bloom SE, Bacon LD (1985) Linkage of the major histocompatibility (B) complex and the nucleolar organizer in the chicken. Assignment to a microchromosome. J Hered 76:146–154

    CAS  PubMed  Google Scholar 

  • Bogolyubov DS, Batalova FM, Kiselyov AM, Stepanova IS (2013) Nuclear structures in Tribolium castaneum oocytes. Cell Biol Int 37:1061–1079

    Article  CAS  PubMed  Google Scholar 

  • Bogolyubova I, Bogolyubov D (2013) Oocyte nuclear structure during mammalian oogenesis. In: Perrotte A (ed) Recent advances in germ cells research. Nova Biomedical, New York, pp 105–131

    Google Scholar 

  • Boisvert FM, Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  CAS  PubMed  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambell FWR (1926) The oogenesis of the fowl (Gallus bankiva). Philos Trans R Soc Lond Biol 214:113–151

    Article  Google Scholar 

  • Brown DD, Dawid I (1968) Specific gene amplification in oocytes. Science 160:272–280

    Article  CAS  PubMed  Google Scholar 

  • Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96:97–112

    Article  CAS  PubMed  Google Scholar 

  • Buszczak M, Cooley L (2000) Eggs to die for: cell death during Drosophila oogenesis. Cell Death Differ 7:1071–1074

    Article  CAS  PubMed  Google Scholar 

  • Callan HG (1986) Lampbrush chromosomes. Springer, Heidelberg

    Book  Google Scholar 

  • Callebaut M (1968) [H3] Uridine incorporation during previtellogenesis and early vitellogenesis in the oocytes of the chick (Gallus gallus). J Embryol Exp Morphol 20:169–174

    CAS  PubMed  Google Scholar 

  • Callebaut M (1973) Correlation between germinal vesicle and oocyte development in the adult Japanese quail (Coturnix coturnix japonica). A cytochemical and autoradiographic study. Development 29:145–157

    CAS  Google Scholar 

  • Chalana RK, Guraya SS (1979) Correlative morphological and cytochemical observations on the nucleoli and nuclear bodies during avian oogenesis. Z Mikrosk Anat Forsch 93:449–457

    CAS  PubMed  Google Scholar 

  • Chin H, Gaginskaia ER, Kalinina EI (1979) Characteristics of oogenesis in the chick. I. The extrafollicular period in the development of the oocytes. Ontogenez 10:340–349

    Google Scholar 

  • Christidis L (1990) Animal cytogenetics 4: Chordata 3B: Aves. Borntraeger, Berlin

    Google Scholar 

  • Coggins L (1973) An ultrastructural and radioautographic study of early oogenesis in the toad Xenopus laevis. J Cell Sci 12:71–93

    CAS  PubMed  Google Scholar 

  • Davidson EH (1986) Gene activity in early development, 3rd edn. Academic Press, New York

    Google Scholar 

  • Dedukh D, Litvinchuk S, Rosanov J, Mazepa G, Saifitdinova A, Shabanov D, Krasikova A (2015) Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS One 10:e0123304

  • Delany ME, Krupkin AB (1999) Molecular characterization of ribosomal gene variation within and among NORs segregating in specialized populations of chicken. Genome 42:60–71

    Article  CAS  PubMed  Google Scholar 

  • Delany ME, Robinson CM, Goto RM, Miller MM (2009) Architecture and organization of chicken microchromosome 16: order of the NOR, MHC-Y, and MHC-B subregions. J Hered 100:507–514

    Article  CAS  PubMed  Google Scholar 

  • Dyomin A, Koshel E, Saifitdinova A, Galkina S, Fukagawa T, Gaginskaya E (2016) Chicken rRNA gene cluster structure. PLoS One. doi:10.1371/journal.pone.0157464

  • Deryusheva S, Gall JG (2004) Dynamics of coilin in Cajal bodies of the Xenopus germinal vesicle. Proc Natl Acad Sci U S A 101:4810–4814

  • Deryusheva S, Krasikova A, Kulikova T, Gaginskaya E (2007) Tandem 41-bp repeats in chicken and Japanese quail genomes: FISH mapping and transcription analysis on lampbrush chromosomes. Chromosoma 116:519–530

    Article  CAS  PubMed  Google Scholar 

  • Dondua AK (2005) Developmental biology, vol 1. Advances in comparative embryology. SPbU, Saint-Petersburg (in Russian)

    Google Scholar 

  • Farley KI, Surovtseva Y, Merkel J, Baserga SJ (2015) Determinants of mammalian nucleolar architecture. Chromosoma 124:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillon V, Zoorob R, Yerle M, Auffray C, Vignal A (1996) Mapping of the genetically independent chicken major histocompatibility complexes B@ and RFP-Y@ to the same microchromosome by two-color fluorescent in situ hybridization. Cytogenet Cell Genet 75:7–9

    Article  CAS  PubMed  Google Scholar 

  • Fulka H, Aoki F (2016) Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries. Biol Reprod doi: 10.1095/biolreprod.115.136093

    PubMed  Google Scholar 

  • Gaginskaya ER (1972a) Nuclear structures in oocytes of adult birds. II. Protein bodies and the karyosphere. Tsitologiia 14:568–578

  • Gaginskaya ER (1972b) Nuclear structures of oocytes in adult birds. I. Chromosome behavior in the period of oocyte cytoplasmic growth. Tsitologiia 14:426–432

  • Gaginskaya ER, Chin SH (1980) Peculiarities of oogenesis in the chicken. II. Follicular period in oocyte development. Ontogenes 11:213–221

    Google Scholar 

  • Gaginskaya ER, Gruzova MN (1969) Peculiarities of the oogenesis in chaffinch. Tsitologiia 11:1241–1251

    CAS  Google Scholar 

  • Gaginskaya ER, Gruzova MN (1975) Detection of the amplified rDNA in ovarial cells of some insects and birds by hybridization in situ. Tsitologiia 17:1132–1137

    CAS  Google Scholar 

  • Gaginskaya E, Kulikova T, Krasikova A (2009) Avian lampbrush chromosomes: a powerful tool for exploration of genome expression. Cytogenet Genome Res 124:251–267

    Article  CAS  PubMed  Google Scholar 

  • Galkina S, Deryusheva S, Fillon V, Vignal A, Crooijmans R, Groenen M, Rodionov A, Gaginskaya E (2006) FISH on avian lampbrush chromosomes produces higher resolution gene mapping. Genetica 128:241–251

    Article  CAS  PubMed  Google Scholar 

  • Gall JG (1968) Differential synthesis of the genes for rRNA during amphibian oogenesis. Proc Natl Acad Sci U S A 60:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall JG (1978) Early studies on gene amplification. Harvey Lect 71:55–70

    CAS  PubMed  Google Scholar 

  • Gard DL, Affleck D, Error BM (1995) Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes. II. A developmental transition in microtubule organization during early diplotene. Dev Biol 168:189–201

    Article  CAS  PubMed  Google Scholar 

  • Ghafari F, Pelengaris S, Walters E, Hartshorne GM (2009) Influence of p53 and genetic background on prenatal oogenesis and oocyte attrition in mice. Hum Reprod 24:1460–1472

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum MP, Iwamori T, Buchold GM, Matzuk MM (2011) Germ cell intercellular bridges. Cold Spring Harb Perspect Biol 1:3:a005850

    Google Scholar 

  • Greenfield ML (1966) The oocyte of the domestic chicken shortly after hatching, studied by electron microscopy. J Embryol Exp Morphol 15:297–316

    CAS  PubMed  Google Scholar 

  • Grob A, Colleran C, McStay B (2014) Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 28:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grummt I (2010) Wisely chosen paths—regulation of rRNA synthesis. FEBS J 277:4626–4639

    Article  CAS  PubMed  Google Scholar 

  • Grummt I (2013) The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma 122:487–497

    Article  CAS  PubMed  Google Scholar 

  • Gruzova MN, Parfenov VN (1993) Karyosphere in oogenesis and intranuclear morphogenesis. Int Rev Cytol 144:1–52

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Maiti BR (1986) Study of atresia in the ovary during the annual reproductive cycle and nesting cycle of the pied myna. J Morphol 190:285–296

    Article  Google Scholar 

  • Guraya SS (1976) Morphological and histochemical observations on follicular atresia and intersitial gland tissue in the columbid ovary. Gen Comp Endocrinol 30:534–538

    Article  CAS  PubMed  Google Scholar 

  • Hamlett WC, Jezior M, Spieler R (1999) Ultrastructural analysis of folliculogenesis in the ovary of the yellow spotted stingray, Urolophus jamaicensis. Ann Anat 181:159–172

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1:415–431

    Article  CAS  PubMed  Google Scholar 

  • Horký M, Kotala V, Anton M, Wesierska-Gadek J (2002) Nucleolus and apoptosis. Ann N Y Acad Sci 973:258–264

    Article  PubMed  Google Scholar 

  • Hughes GC (1963) The population of germ cells in the developing female chick. J Embryol Exp Morphol 11:513–536

    CAS  PubMed  Google Scholar 

  • Hutchison N (1987) Lampbrush chromosomes of the chicken. J Cell Biol 105:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • ICGS Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • James A, Wang Y, Raje H, Rosby R, DiMario P (2014) Nucleolar stress with and without p53. Nucleus 5:402–426

    Article  PubMed  PubMed Central  Google Scholar 

  • Kezer J, Leon PE, Sessions SK (1980) Structural differentiation of the meiotic and mitotic chromosomes of the salamander, Ambystoma macrodactylum. Chromosoma 81:177–197

    Article  Google Scholar 

  • Khodyuchenko T, Gaginskaya E, Krasikova A (2012) Non-canonical Cajal bodies form in the nucleus of late stage avian oocytes lacking functional nucleolus. Histochem Cell Biol 138:57–73

    Article  CAS  PubMed  Google Scholar 

  • King RC (1970) The meiotic behavior of the Drosophila oocyte. Int Rev Cytol 28:125–168

    Article  CAS  PubMed  Google Scholar 

  • Korschelt E, Heider R (1902) Lehrbuch der vergleichenden Entwicklungsgeschichte der wirbellosen Thieren. Fischer, Jena

    Google Scholar 

  • Krasikova A, Deryusheva S, Galkina S, Kurganova A, Evteev A, Gaginskaya E (2006) On the positions of centromeres in chicken lampbrush chromosomes. Chromosome Res 14:777–789

    Article  CAS  PubMed  Google Scholar 

  • Kropotova EV, Gaginskaya ER (1984) Lampbrush chromosomes from the Japanese quail oocytes. Tsitologiya 26:1008–1011

    Google Scholar 

  • Kyogoku H, Fulka J, Wakayama T, Miyano T (2014) De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes. Development 141:2255–2259

    Article  CAS  PubMed  Google Scholar 

  • Lam YW, Trinkle-Mulcahy L (2015) New insights into nucleolar structure and function. F1000Prime Rep 7:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei L, Spradling AC (2016) Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352:95–99

    Article  CAS  PubMed  Google Scholar 

  • Loyez M (1906) Recherches sur le développement ovarien des oeufs méroblastiques à vitellus nutritif abondant. Archs Anat Microsc 8:239–397

  • Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P (2010) Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464:283–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macgregor HC (1963) Morphological variability and its physiological origin in oocyte nuclei of the crested newt. J Cell Sci 3:351–368

    Google Scholar 

  • Macgregor HC (1965) The role of lampbrush chromosomes in the formation of nucleoli in amphibian oocytes. Q J Microsc Sci 106:215–228

    CAS  PubMed  Google Scholar 

  • Macgregor HC (1968) Nucleolar DNA in oocytes of Xenopus laevis. J Cell Sci 3:417–444

    Google Scholar 

  • Macgregor HC (1972) The nucleolus and its genes in amphibian oogenesis. Biol Rev Camb Philos Soc 47:177–210

    Article  CAS  PubMed  Google Scholar 

  • Macgregor HC (1980) Recent developments in the study of lampbrush chromosomes. Heredity 44:3–35

    Article  Google Scholar 

  • Macgregor HC (1982) Ways of amplifying ribosomal genes. In: Jordan EG, Cullis CA (eds) The nucleolus. Cambridge University Press, Cambridge, pp 129–151

    Google Scholar 

  • Macgregor HC (1986) The lampbrush chromosomes of animal oocytes. In: Risley MS (ed) Chromosome structure and function. Van Rostrand Reinhold, New York, pp 152–186

    Google Scholar 

  • Macgregor HC (2012) Chromomeres revisited. Chromosome Res 20:911–924

    Article  CAS  PubMed  Google Scholar 

  • Macgregor HC, Kezer J (1973) The nucleolar organizer of Plethodon cinereus cinereus (Green). Chromosoma 42:415–426

    Article  CAS  PubMed  Google Scholar 

  • Macgregor H, Klosterman L (1979) Observations on the cytology of Bipes (Amphisbaenia) with special reference to its lampbrush chromosomes. Chromosoma 72:67–87

    Article  Google Scholar 

  • Macgregor HC, Stebbings H (1970) A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J Cell Sci 6:431–449

    CAS  PubMed  Google Scholar 

  • Macgregor HC, Vlad M, Barnett L (1977) An investigation of some problems concerning nucleolus organizers in salamanders. Chromosoma 59:283–299

    Article  CAS  Google Scholar 

  • Madekurozwa M-C, Kimaro WH (2006) A morphological and immunohistochemical study of healthy and atretic follicles in the ovary of the sexually immature ostrich (Struthio camelus). Anat Histol Embryol 35:253–258

    Article  PubMed  Google Scholar 

  • Manfredi JJ (2010) The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24:1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masabanda JS, Burt DW, O’Brien PC, Vignal A, Fillon V, Walsh PS, Cox H, Tempest HG, Smith J, Habermann F, Schmid M, Matsuda Y, Ferguson-Smith MA, Crooijmans RP, Groenen MA, Griffin DK (2004) Molecular cytogenetic definition of the chicken genome: the first complete avian karyotype. Genetics 166:1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson TD, Kaufman PD (2016) Grabbing the genome by the NADs. Chromosoma 125:361–371

  • Matova N, Cooley L (2001) Comparative aspects of animal oogenesis. Dev Biol 231:291–320

    Article  CAS  PubMed  Google Scholar 

  • McPherson MC, Robinson CM, Gehlen LP, Delany ME (2014) Comparative cytogenomics of poultry: mapping of single gene and repeat loci in the Japanese quail (Coturnix japonica). Chromosome Res 22:71–83

    Article  CAS  PubMed  Google Scholar 

  • Miller MM, Goto RM, Taylor RL Jr, Zoorob R, Auffray C, Briles RW, Briles WE, Bloom SE (1996) Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. Proc Natl Acad Sci U S A 93:3958–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MM, Robinson CM, Abernathy J, Goto RM, Hamilton MK, Zhou H, Delany ME (2014) Mapping genes to chicken microchromosome 16 and discovery of olfactory and scavenger receptor genes near the major histocompatibility complex. J Hered 105:203–215

    Article  CAS  PubMed  Google Scholar 

  • Moore BC, Uribe-Aranzabal MC, Boggs ASP, Guillette LJ Jr (2008) Developmental morphology of the neonatal alligator (Alligator mississippiensis) ovary. J Morphol 269:302–312

    Article  PubMed  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 10:177–200

    Article  CAS  PubMed  Google Scholar 

  • Morgan GT, Macgregor HC, Colman A (1980) Multiple ribosomal gene sites revealed by in situ hybridization of Xenopus rDNA to Triturus lampbrush chromosomes. Chromosoma 80:309–330

    Article  CAS  PubMed  Google Scholar 

  • Nainan H, Ping Y, Yang Y, Jinxiong L, Huijun B2, Haili L, Hui Z, Qiusheng C (2009) Fine structural observation on the oogenesis and vitellogenesis of the Chinese soft-shelled turtle (Pelodiseus sinensis). Zygote 18:109–120

    Article  Google Scholar 

  • Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, Solovei I, Cremer T, Dopazo J, Langst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6: e1000889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie W, O’Brien PC, Ng BL, Fu B, Volobouev V, Carter NP, Ferguson-Smith MA, Yang F (2009) Avian comparative genomics: reciprocal chromosome painting between domestic chicken (Gallus gallus) and the stone curlew (Burhinus oedicnemus, Charadriiformes)—an atypical species with low diploid number. Chromosome Res 17:99–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogushi S, Palmieri C, Fulka H, Saitou M, Miyano T, Fulka J (2008) The maternal nucleolus is essential for early embryonic development in mammals. Science 319:613–616

    Article  CAS  PubMed  Google Scholar 

  • Oliveira EH de, Habermann FA, Lacerda O, Sbalqueiro IJ, Wienberg J, Müller S (2005) Chromosome reshuffling in birds of prey: the karyotype of the world’s largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). Chromosoma 114:338–343

  • Olson MOJ, Dundr M (2015) Nucleolus: structure and function. eLS. doi:10.1002/9780470015902.a0005975.pub3

    Google Scholar 

  • Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parfenov VN, Pochukalina GN, Davis DS, Reinbold R, Schöler HR, Murti KG (2003) Nuclear distribution of Oct-4 transcription factor in transcriptionally active and inactive mouse oocytes and its relation to RNA polymerase II and splicing factors. J Cell Biochem 89:720–732

    Article  CAS  PubMed  Google Scholar 

  • Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3:a000638

    PubMed  PubMed Central  Google Scholar 

  • Pepling ME, Spradling AC (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol 234:339–351

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Bermúdez E, Ruiz-Urquiola A, Lee-González I, Petric B, Almaguer-Cuenca N, Sanz-Ochotorena A, Espinosa–López G (2012) Ovarian follicular development in the hawksbill turtle (Cheloniidae: Eretmochelys imbricata L.). J Morphol 273:1338–1352

    Article  PubMed  Google Scholar 

  • Perkowska E, Macgregor HC, Birnstiel ML (1968) Gene amplification in the oocyte nucleus of mutant and wild-type Xenopus laevis. Nature 217:649–650

    Article  CAS  PubMed  Google Scholar 

  • Press N (1964) An unusual organelle in avian ovaries. J Ultrastruct Res 10:528–546

    Article  CAS  PubMed  Google Scholar 

  • Rahil KS, Narbaitz R (1973) Ultrastructural studies on the relationship between follicular cells and growing oocytes in the turtle Pseudemys scripta elegans. J Anat 115:175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raven CP (1961) Oogenesis: the storage of developmental information. Pergamon, Oxford

    Google Scholar 

  • Rocha GT, Lucca EJ de (1988) Nucleolar organizer regions in somatic chromosomes of some species of birds. Caryologia 41:299–308

  • Rodionov AV (1996) Micro versus macro: a review of structure and functions of avian micro- and macrochromosomes. Genetika 32:517–527

    CAS  Google Scholar 

  • Saifitdinova A, Derjusheva S, Krasikova A, Gaginskaya E (2003) Lampbrush chromosomes of the chaffinch (Fringilla coelebs L.). Chromosome Res 11:99–113

    Article  CAS  PubMed  Google Scholar 

  • Schjeide OA, Galley F, Grellert EA, I-San Lin R, Vellis J de, Mead JF (1970) Macromolecules in oocyte maturation. Biol Reprod 2:14–43

  • Schjeide OA, Kancheva L, Hanzely L, Briles WE (1975) Production and fates of unique organelles (transosomes) in ovarian follicles of Gallus domesticus under various conditions. II. Cell Tissue Res 163:63–79

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RP, Damas J, Davis RV, Koning DJ de, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MA, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O’Connor R, O’Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JM, Wragg D, Zhou H (2015) Third report on chicken genes and chromosomes. Cytogenet Genome Res 145:78–179

  • Shaw P, Brown J (2012) Nucleoli: composition, function, and dynamics. Plant Physiol 158:44–51

    Article  CAS  PubMed  Google Scholar 

  • Shishova KV, Khodarovich YM, Lavrentyeva EA, Zatsepina OV (2015a) High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes. Exp Cell Res 337:208–218

  • Shishova KV, Lavrentyeva EA, Dobrucki JW, Zatsepina OV (2015b) Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA. Dev Biol 397:267–281

  • Singer M, Berg P (1991) Genes and genomes, a changing perspective. University Science Books, Mill Valley

    Google Scholar 

  • Solinhac R, Leroux S, Galkina S, Chazara O, Feve K, Vignoles F, Morisson M, Derjusheva S, Bed’hom B, Vignal A, Fillon V, Pitel F (2010) Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genomics 11:616. doi:10.1186/1471-2164-11-616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solomon B (1957) Nucleic acid content of the egg of the domestic fowl. Biochim Biophys Acta 23:211–213

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Gaginskaya ER, Macgregor HC (1994) The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds. Chromosome Res 2:460–470

    Article  CAS  PubMed  Google Scholar 

  • Solovei IV, Joffe BI, Gaginskaya ER, Macgregor HC (1996) Transcription of lampbrush chromosomes of a centromerically localized highly repeated DNA in pigeon (Columba) relates to sequence arrangement. Chromosome Res 4:588–603

    Article  CAS  PubMed  Google Scholar 

  • Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 1–70

    Google Scholar 

  • Tilly JL (2001) Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol 2:838–848

    Article  CAS  PubMed  Google Scholar 

  • Uribe MC, Guillette LJ Jr (2000) Oogenesis and ovarian histology of the American alligator Alligator mississippiensis. J Morphol 245:225–240

    Article  CAS  PubMed  Google Scholar 

  • Wain HM, Toye AA, Hughes S, Bumstead N (1998) Targeting of marker loci to chicken chromosome 16 by representational difference analysis. Anim Genet 29:446–452

    Article  CAS  PubMed  Google Scholar 

  • Wylie CC (1972) Nuclear morphology and nucleolar DNA synthesis during meiotic prophase in oocytes of the chick (Gallus domesticus). Cell Differ 1:325–334

    Article  CAS  PubMed  Google Scholar 

  • Zlotina A, Galkina S, Krasikova A, Crooijmans RPMA, Groenen MAM, Gaginskaya E, Deryusheva S (2010) Precise centromere positioning on chicken chromosome 3. Cytogenet Genome Res 129:310–313

    Article  CAS  PubMed  Google Scholar 

  • Zlotina A, Galkina S, Krasikova A, Crooijmans RP, Groenen MA, Gaginskaya E, Deryusheva S (2012) Centromere positions in chicken and Japanese quail chromosomes: de novo centromere formation versus pericentric inversions. Chromosome Res 20:1017–1032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We cordially express our gratitude to Herbert Macgregor whose critical comments to the manuscript have been extremely useful. We thank Olga Lavrova and Asya Davidyan for providing juvenile chicken ovary micrographs. We are also grateful to Saint Petersburg State University Scientific Park for providing equipment and software (“Chromas” Core Facility).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gaginskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshel, E., Galkina, S., Saifitdinova, A. et al. Ribosomal RNA gene functioning in avian oogenesis. Cell Tissue Res 366, 533–542 (2016). https://doi.org/10.1007/s00441-016-2444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2444-4

Keywords

Navigation