Skip to main content

Advertisement

Log in

Characterization of gliomas: from morphology to molecules

  • Invited Annual Review Issue
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

This article reviews the histologic and molecular characterization of gliomas, including the new “integrated diagnoses” of the World Health Organization Classification, 2016 edition. The entities reviewed within include diffuse gliomas (astrocytoma, oligodendroglioma, glioblastoma), as well as circumscribed and low-grade gliomas (angiocentric glioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, pleomorphic xanthoastrocytoma, pilomyxoid astrocytoma, ependymoma, myxopapillary ependymoma, and subependymoma). Diagnostic, prognostic, and predictive biomarkers are discussed for each entity. We review how molecular testing for IDH1 and ATRX and detection of chromosome 1p/19q codeletion can be used to categorize glioblastomas as IDH-wildtype or IDH-mutant, and lower grade diffuse gliomas into three molecular groups that correlate better with patient outcomes than histologic subtyping. Pediatric diffuse gliomas are highlighted, including diffuse midline glioma, H3 K27M-mutant, and inherited germline mutations that predispose to pediatric gliomas. The utility of genomic profiling of certain gliomas is discussed, including identifying candidates for experimental therapies. This review is meant to be a concise summary of glioma characterization for the practicing pathologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batista CM, Mariano ED, Barbosa BJAP et al (2014) Adult neurogenesis and glial oncogenesis: when the process fails. Biomed Res Int 2014:438639

    PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology 17(Suppl 4):iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  4. Waitkus MS, Diplas BH, Yan H (2016) Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology 18:16–26

    Article  PubMed  Google Scholar 

  5. Perry A, Wesseling P (2016) Histologic classification of gliomas. Handb Clin Neurol 134:71–95

    Article  PubMed  Google Scholar 

  6. Barnholtz-Sloan JS, Sloan AE, Davis FG et al (2004) Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol 22:2865–2872

    Article  PubMed  Google Scholar 

  7. Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neuro-Oncol 75:5–14

    Article  Google Scholar 

  8. Stelzer KJ (2013) Epidemiology and prognosis of brain metastases. Surg Neurol Int 4:S192–S202

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chiang JC, Ellison DW (2017) Molecular pathology of paediatric central nervous system tumours. J Pathol 241:159–172

    Article  CAS  PubMed  Google Scholar 

  10. Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14:651–661

    CAS  Google Scholar 

  11. Blümcke I, Müller S, Buslei R et al (2004) Microtubule-associated protein-2 immunoreactivity: a useful tool in the differential diagnosis of low-grade neuroepithelial tumors. Acta Neuropathol 108:89–96

    Article  PubMed  Google Scholar 

  12. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol 129:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reuss DE, Mamatjan Y, Schrimpf D et al (2015) IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol 129:867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cancer Genome Atlas Research Network, Brat DJ, RGW V et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498

    Article  Google Scholar 

  15. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of Tumours of the central nervous system (revised 4th edition). IARC, Lyon

    Google Scholar 

  16. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohgaki H, Kleihues P (2012) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772

    Article  PubMed  Google Scholar 

  19. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007

    Article  CAS  PubMed  Google Scholar 

  20. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horbinski C (2013) What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 125:621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen L, Voronovich Z, Clark K et al (2014) Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma. Neuro-Oncology 16:1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114

    Article  CAS  PubMed  Google Scholar 

  24. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 110:6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3:709–722

    Article  PubMed  PubMed Central  Google Scholar 

  27. Killela PJ, Pirozzi CJ, Healy P et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5:1515–1525

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wesseling P, van den Bent M, Perry A (2015) Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:809–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146

    Article  CAS  PubMed  Google Scholar 

  31. Bettegowda C, Agrawal N, Jiao Y et al (2011) Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333:1453–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez FJ, Tihan T, Lin D et al (2014) Clinicopathologic features of pediatric oligodendrogliomas. Am J Surg Pathol 38:1058–1070

    PubMed  PubMed Central  Google Scholar 

  33. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468

    Article  CAS  PubMed  Google Scholar 

  34. Ebrahimi A, Skardelly M, Bonzheim I et al (2016) ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 4:60

    Article  PubMed  PubMed Central  Google Scholar 

  35. Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    Article  CAS  PubMed  Google Scholar 

  36. Chan KM, Han J, Fang D et al (2013) A lesson learned from the H3.3K27M mutation found in pediatric glioma. Cell Cycle 12:2546–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hake SB, Garcia BA, Duncan EM et al (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568

    Article  CAS  PubMed  Google Scholar 

  38. Jansen MHA, van Zanten SEMV, Heymans MW et al (2016) Commentary on “Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes.”. Acta Neuropathol 131:793–794

    Article  PubMed  Google Scholar 

  39. Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  42. Malzkorn B, Reifenberger G (2016) Practical implications of integrated glioma classification according to the World Health Organization classification of tumors of the central nervous system 2016. Curr Opin Oncol 28:494–501

    Article  PubMed  Google Scholar 

  43. Hartmann C, Hentschel B, Simon M et al (2013) Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res 19:5146–5157

    Article  CAS  PubMed  Google Scholar 

  44. Weller M, Kaulich K, Hentschel B et al (2014) Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int J Cancer 134:2437–2447

    Article  CAS  PubMed  Google Scholar 

  45. Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    CAS  PubMed  Google Scholar 

  46. Bush NAO, Butowski N (2017) The effect of molecular diagnostics on the treatment of glioma. Curr Oncol Rep 19:26

    Article  PubMed  Google Scholar 

  47. Takami H, Yoshida A, Fukushima S et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25:256–265

    Article  CAS  PubMed  Google Scholar 

  48. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  51. Brennan CW, Verhaak RGW, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sahm F, Schrimpf D, Jones DTW et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131:903–910

    Article  CAS  PubMed  Google Scholar 

  53. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  54. Zawlik I, Vaccarella S, Kita D et al (2009) Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32:21–29

    Article  PubMed  Google Scholar 

  55. Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma. Cancer Res 64:6892–6899

    Article  CAS  PubMed  Google Scholar 

  56. McDonald KL, Tabone T, Nowak AK, Erber WN (2015) Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation. Oncol Lett 9:2063–2067

    PubMed  PubMed Central  Google Scholar 

  57. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  58. Cahill DP, Levine KK, Betensky RA et al (2007) Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13:2038–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193

    Article  CAS  PubMed  Google Scholar 

  60. Paugh BS, Zhu X, Qu C et al (2013) Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73:6219–6229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alexandrescu S, Korshunov A, Lai SH et al (2016) Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas—same entity or first cousins? Brain Pathol 26:215–223

    Article  CAS  PubMed  Google Scholar 

  62. Kleinschmidt-DeMasters BK, Aisner DL, Foreman NK (2015) BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am J Surg Pathol 39:528–540

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK (2013) Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 37:685–698

    Article  PubMed  PubMed Central  Google Scholar 

  64. Robinson GW, Orr BA, Gajjar A (2014) Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14:258

    Article  PubMed  PubMed Central  Google Scholar 

  65. Korshunov A, Capper D, Reuss D et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131:137–146

    Article  CAS  PubMed  Google Scholar 

  66. Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678

    Article  CAS  PubMed  Google Scholar 

  67. Ferris SP, Goode B, Joseph NM et al (2016) IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10 years of age. Acta Neuropathol 132:153–155

    Article  PubMed  PubMed Central  Google Scholar 

  68. Johansson G, Andersson U, Melin B (2016) Recent developments in brain tumor predisposing syndromes. Acta Oncol 55:401–411

    Article  CAS  PubMed  Google Scholar 

  69. Garcia MA, Solomon DA, Haas-Kogan DA (2016) Exploiting molecular biology for diagnosis and targeted management of pediatric low-grade gliomas. Future Oncol 12:1493–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang J, Wu G, Miller CP et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bandopadhayay P, Ramkissoon LA, Jain P et al (2016) MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heaven MR, Flint D, Randall SM et al (2016) Composition of rosenthal fibers, the protein aggregate hallmark of Alexander disease. J Proteome Res 15:2265–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Collins VP, Jones DTW, Giannini C (2015) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bar EE, Lin A, Tihan T et al (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887

    Article  CAS  PubMed  Google Scholar 

  75. Pfister S, Janzarik WG, Remke M et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jones DTW, Hutter B, Jäger N et al (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tihan T, Fisher PG, Kepner JL et al (1999) Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 58:1061–1068

    Article  CAS  PubMed  Google Scholar 

  78. Ceppa EP, Bouffet E, Griebel R et al (2006) The pilomyxoid astrocytoma and its relationship to pilocytic astrocytoma: report of a case and a critical review of the entity. J Neuro-Oncol 81:191–196

    Article  Google Scholar 

  79. Kleinschmidt-DeMasters BK, Donson AM, Vogel H, Foreman NK (2015) Pilomyxoid astrocytoma (PMA) shows significant differences in gene expression vs. pilocytic astrocytoma (PA) and variable tendency toward maturation to PA. Brain Pathol 25:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perkins SM, Mitra N, Fei W, Shinohara ET (2012) Patterns of care and outcomes of patients with pleomorphic xanthoastrocytoma: a SEER analysis. J Neuro-Oncol 110:99–104

    Article  Google Scholar 

  81. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  82. Koelsche C, Sahm F, Wöhrer A et al (2014) BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol 24:221–229

    Article  CAS  PubMed  Google Scholar 

  83. Kwiatkowska J, Wigowska-Sowinska J, Napierala D et al (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 340:703–707

    Article  CAS  PubMed  Google Scholar 

  84. Jain A, Amin AG, Jain P et al (2012) Subependymoma: clinical features and surgical outcomes. Neurol Res 34:677–684

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mack SC, Agnihotri S, Bertrand KC et al (2015) Spinal myxopapillary ependymomas demonstrate a Warburg phenotype. Clin Cancer Res 21:3750–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Prayson RA (1997) Myxopapillary ependymomas: a clinicopathologic study of 14 cases including MIB-1 and p53 immunoreactivity. Mod Pathol 10:304–310

    CAS  PubMed  Google Scholar 

  87. Bayliss J, Mukherjee P, Lu C et al (2016) Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci Transl Med 8:366ra161

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pajtler KW, Witt H, Sill M et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wani K, For the Collaborative Ependymoma Research Network, Armstrong TS et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mack SC, Witt H, Piro RM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Perry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferris, S.P., Hofmann, J.W., Solomon, D.A. et al. Characterization of gliomas: from morphology to molecules. Virchows Arch 471, 257–269 (2017). https://doi.org/10.1007/s00428-017-2181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-017-2181-4

Keywords

Navigation