Skip to main content

Advertisement

Log in

Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Overexpression of the citrus CsTIP2;1 improves plant growth and tolerance to salt and drought stresses by enhancing cell expansion, H 2 O 2 detoxification and stomatal conductance.

Tonoplast intrinsic proteins (TIPs) are a subfamily of aquaporins, belonging to the major intrinsic protein family. In a previous study, we have shown that a citrus TIP isoform, CsTIP2;1, is highly expressed in leaves and also transcriptionally regulated in leaves and roots by salt and drought stresses and infection by ‘Candidatus Liberibacter asiaticus’, the causal agent of the Huanglongbing disease, suggesting its involvement in the regulation of the flow of water and nutrients required during both normal growth and stress conditions. Here, we show that the overexpression of CsTIP2;1 in transgenic tobacco increases plant growth under optimal and water- and salt-stress conditions and also significantly improves the leaf water and oxidative status, photosynthetic capacity, transpiration rate and water use efficiency of plants subjected to a progressive soil drying. These results correlated with the enhanced mesophyll cell expansion, midrib aquiferous parenchyma abundance, H2O2 detoxification and stomatal conductance observed in the transgenic plants. Taken together, our results indicate that CsTIP2;1 plays an active role in regulating the water and oxidative status required for plant growth and adaptation to stressful environmental conditions and may be potentially useful for engineering stress tolerance in citrus and other crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DAB:

3,3′-Diaminobenzidine

MIP:

Major intrinsic protein

RWC:

Relative water content

WT:

Wild type

WUE:

Water use efficiency

References

  • Azad AK, Yoshikawa N, Ishikawa T, Sawa Y, Shibata H (2012) Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. Biochim Biophys Acta 1818:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cidade LC, de Oliveira TM, Mendes AFS, Macedo AF, Floh EIS, Gesteira AS, Soares-Filho WS, Costa MGC (2012) Ectopic expression of a fruit phytoene synthase from Citrus paradisi Macf. promotes abiotic stress tolerance in transgenic tobacco. Mol Biol Rep 39:10201–10209

    Article  CAS  PubMed  Google Scholar 

  • Dynowski M, Schaaf G, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414:53–61

    Article  CAS  PubMed  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Fleurat-Lessard P, Michonneau P, Maeshima M, Drevon J-J, Serraj R (2005) The distribution of aquaporin subtypes (PIP1, PIP2 and g-TIP) is tissue dependent in soybean (Glycine max) root nodules. Ann Bot 96:457–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  CAS  PubMed  Google Scholar 

  • Fouquet R, Léon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27:1541–1550

    Article  CAS  PubMed  Google Scholar 

  • Fraysse LC, Wells B, McCann MC, Kjellbom P (2005) Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells. Biol Cell 97:519–534

    Article  CAS  PubMed  Google Scholar 

  • Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228

    Article  CAS  PubMed  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M (1998) Molecular cloning, water channel activity and tissue specific expression of two isoforms of radish vacuolar aquaporin. Plant Cell Physiol 39:905–913

    Article  CAS  PubMed  Google Scholar 

  • Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75:413–430

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Yuan Q, Wang Y, Cai R, Deng X, Wang J, Zhou S, Chen M, Chen L, Huang C, Ma Z, Yang G, He G (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–2141

    Article  CAS  PubMed  Google Scholar 

  • Jauh GY, Fischer AM, Grimes HD, Ryan CA, Rogers JC (1998) δ-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci USA 95:12995–12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. MacGraw Hill, New York

    Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R, Kolling A, Meyers J, Karmann U, Ruppel G, Richter G (1995) The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J 7:87–95

    Article  CAS  PubMed  Google Scholar 

  • Kawase M, Hanba YT, Katsuhara M (2013) The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J Plant Res 126:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WL, Peng YH, Li GW, Arora R, Tang ZC, Su WA, Cai WM (2007) Isolation and functional characterization of PgTIP1, a hormone autotrophic cells-specific tonoplast intrinsic protein in ginseng. J Exp Bot 58:947–956

    Article  CAS  PubMed  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins CPS, Pedrosa AM, Du D, Gonçalves LP, Yu Q, Gmitter FG Jr, Costa MGC (2015) Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10(9):e0138786

    Article  Google Scholar 

  • Maurel C, Tacnet F, Güclü J, Guern J, Ripoche P (1997) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci USA 94:7103–7108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Santoni V, Luu D-T, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698

    Article  CAS  PubMed  Google Scholar 

  • Okubo-Kurihara E, Sano T, Higaki T, Kutsuna N, Hasezawa S (2009) Acceleration of vacuolar regeneration and cell growth by overexpression of an aquaporin NtTIP1;1 in tobacco BY-2 cells. Plant Cell Physiol 50:151–160

    Article  CAS  PubMed  Google Scholar 

  • Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  CAS  PubMed  Google Scholar 

  • Prado K, Maurel C (2013) Regulation of leaf hydraulics: from molecular to whole plant levels. Front Plant Sci 4:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado K, Boursiac Y, Tournaire-Roux C, Monneuse JM, Postaire O, Da Ines O, Schäffner AR, Hem S, Santoni V, Maurel C (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisen D, Leborgne-Castel N, Özalp C, Chaumont F, Marty F (2003) Expression of a cauliflower tonoplast aquaporin tagged with GFP in tobacco suspension cells correlates with an increase in cell size. Plant Mol Biol 52:387–400

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analyses of their expression and function. Plant Cell Physiol 45:1568–1577

    Article  Google Scholar 

  • Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, CasseDelbart F, Lamaze T (1997) Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J 12:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2010) Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process. Plant Cell Environ 33:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2008) Plant biotechnology: the genetic manipulation of plants. Oxford University Press, New York

    Google Scholar 

  • Sun MH, Wen X, Zhu YF, Su WA, Tang ZC (2007) A simple method for in situ hybridization to RNA in guard cells of Vicia faba L.: the expression of aquaporins in guard cells. Plant Mol Biol Rep 19:129–135

    Article  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun X-L, Chen L-J, Zhu Y-M (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Wudick MM, Luu D-T, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7(12):e52439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Embrapa (Macroprograma 2), CNPq (Brasília, Brazil) and FAPESP (São Paulo, Brazil). We gratefully acknowledge the Ph.D. Degree scholarship to C.P.S. Martins by CAPES (Brasília, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio G. C. Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, C.P.S., Neves, D.M., Cidade, L.C. et al. Expression of the citrus CsTIP2;1 gene improves tobacco plant growth, antioxidant capacity and physiological adaptation under stress conditions. Planta 245, 951–963 (2017). https://doi.org/10.1007/s00425-017-2653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2653-4

Keywords

Navigation