Skip to main content
Log in

Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

SbMYB15, R2R3-type MYB was induced by the different stresses, and conferred stress tolerance in transgenic tobacco by regulating the expression of stress-responsive genes.

MYBs are the master regulators of various metabolic processes and stress responses in plants. In this study, we functionally characterised a R2R3-type SbMYB15 transcription factor (TF) from the extreme halophyte Salicornia brachiata. The SbMYB15 acts as a transcriptional activator. Transcriptional analysis showed that SbMYB15 transcript was strongly upregulated in red shoots and was also induced by different stresses; however, its expression remained unchanged with ABA. Overexpression of SbMYB15 in tobacco significantly improved salinity and dehydration tolerance. The enhanced tolerance of the transgenic plants was defined by the changes in chlorophyll, malondialdehyde (MDA), proline, total soluble sugar and total amino acid contents. The transgenic plants exhibited a higher membrane stability and reduced electrolyte leakage, H2O2 and O 2 content compared to the wild type (WT). With ionic stress, transgenics showed a low Na+ and a high K+ content. In the transgenic plants, the expression of stress-responsive genes such as LEA5, ERD10D, PLC3, LTP1, HSF2, ADC, P5CS, SOD and CAT was enhanced in the presence of salinity, dehydration and heat. Exposure to gradual salinity and dehydration resulted in an increased stomatal conductance, water use efficiency, photosynthesis rate, photochemical quenching and reduced transpiration rate. Thus, SbMYB15 served as an important mediator of stress responses regulating different stress signalling pathways, leading to enhanced stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Ci:

Intercellular CO2 concentration

Ca:

Ambient CO2 concentration

ETR:

Photosynthetic electron transport rate

g:

Stomatal conductance

MDA:

Malondialdehyde

NPQ:

Non-photochemical fluorescence quenching

PEG:

Polyethylene glycol

SA:

Salicylic acid

TF:

Transcription factor

VA:

Transgenic plants transformed with pCAMBIA 1301

WUE:

Water use efficiency

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adams III WW, Muller O, Cohu CM, Demmig-Adams B (2014) Photosystem II efficiency and non-photochemical fluorescence quenching in the context of source-sink balance. In: Demmig-Adams B, Garab G, Adam III WW, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht, pp 503–529. doi:10.1007/978-94-017-9032-1

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meena RC (2005) Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci 169:559–570

    Article  CAS  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Batra NG, Sharma V, Kumari N (2014) Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J Plant Interact 9:712–721

    Article  CAS  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Braun EL, Grotewold E (1999) Newly discovered plant c-myb-like genes rewrite the evolution of the plant myb gene family. Plant Physiol 121:21–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen BJ, Wang Y, Hu YL, Wu Q, Lin ZP (2005) Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia. Plant Sci 168:493–500

    Article  CAS  Google Scholar 

  • Chen YH, Yang XY, He K, Liu MH et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  CAS  Google Scholar 

  • Chen N, Yang Q, Pan L, Chi X, Chen M, Hu D, Yang Z, Wang T, Wang M, Yu S (2014) Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.). Gene 533:332–345

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Chomczynski P, Sacchi N, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Cook GD, Dixon JR, Leopold AC (1964) Transpiration: its effects on plant leaf temperature. Science 144:546–547

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Du H, Feng B-R, Yang S-S, Huang Y-B, Tang Y-X (2012) The R2R3-MYB transcription factor gene family in maize. PLoS One 7:e37463

    Article  PubMed Central  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Escalona JM, Evain S, Gulías J, Moya I, Osmond CB, Medrano H (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol Plant 114:231–240

    Article  CAS  PubMed  Google Scholar 

  • Gao JJ, Zhang Z, Peng R-H, Xiong A-S, Xu J, Zhu B, Yao QH (2011) Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep 38:205–211

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim J, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 16:657–673

    Article  CAS  PubMed  Google Scholar 

  • He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Farley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 84:111–120

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Clegg MT, Jiang T (2004) Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol 134:575–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Do Choi Y, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Guo T (2014) Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant 36:2287–2297

    Article  CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kranz HD, Denekamp M, Greco R et al (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and ABA signaling to activate the CBF-COR pathway in Arabidopsis. Plant J. doi:10.1111/tpj.12866

    Google Scholar 

  • Li C, Ng CK-Y, Fan L-M (2014) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot. doi:10.1016/j.envexpbot.2014.06.014

    Google Scholar 

  • Liao Y, Zou H-F, Wang H-W, Zhang W-K, Ma B, Zhang J-S, Chen SY (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res 18:1047–1060

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:842–878

    Article  Google Scholar 

  • Liu F, Pang SJ (2010) Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmata. J Exp Mar Biol Ecol 382:82–87

    Article  CAS  Google Scholar 

  • Liu J, Shi DC (2010) Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt–alkaline mixed stress. Photosynthetica 48:127–134

    Article  CAS  Google Scholar 

  • Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z (2013) Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot 64:2243–2253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Dai X, Xu Y et al (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiol 20:131–138

    Article  PubMed  Google Scholar 

  • Mattana M, Biazzi E, Consonni R, Locatelli F, Vannini C, Provera S, Coraggio I (2005) Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiol Plant 125:212–223

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3 MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A (1996) The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol 3:178–187

    Article  CAS  PubMed  Google Scholar 

  • Osmond CB, Grace SC (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    Article  CAS  Google Scholar 

  • Parida AK, Jha B (2013) Physiological and biochemical responses reveal the drought tolerance efficacy of the halophyte Salicornia brachiata. J Plant Growth Regul 32:342–352

    Article  CAS  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Wang M, Tian Y, He W, Han L, Xia G (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riechmann JL (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Liu J (2003) The PredictProtein server. Nucleic Acids Res 31:3300–3304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo PJ, Park CM (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol 186:471–483

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64:119–127

    Article  CAS  PubMed  Google Scholar 

  • Shepherd CT, Lauter ANM, Scott MP (2009) Determination of transgene copy number by real-time quantitative PCR. In: Scott MP (ed) Methods in molecular biology: transgenic maize. Humana Press, New York, pp 129–134

    Chapter  Google Scholar 

  • Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–923

    Article  CAS  PubMed  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73:483–495

    Article  CAS  PubMed  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  PubMed  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9(3):e92913

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Jia J, Liu X, Kong X (2012) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication No. 019/2015. The authors are thankful to Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance. P.S. Shukla is thankful to AcSIR for enrolment in Ph.D. and CSIR for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Agarwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2015_2366_MOESM1_ESM.pptx

Supplementary material 1 Fig. S1 Schematic representation of gradual exposure to treatments of N. tabacum WT and transgenic lines in the greenhouse(PPTX 1055 kb)

425_2015_2366_MOESM2_ESM.pptx

Supplementary material 2 Fig. S2 Sequence logos of R2–R3 repeats of SbMYB15. The overall height of each stack indicates the conservation of the sequence at particular position. The height of letters within each stack represents the relative frequency of the corresponding amino acid. The triangle indicates the positions of the conserved tryptophan (W) and phenylalanine (F) amino acids, which are identical in other MYB proteins (PPTX 284 kb)

425_2015_2366_MOESM3_ESM.pptx

Supplementary material 3 Fig. S3 Nucleotide and deduced amino acid sequences of the SbMYB15 gene. R2 and R3 repeats are marked by black arrows. Conserved tryptophan residues are shown by (*). The presence of SANT domains in SbMYB15 is demarcated by a red box. Linker region of R2 and R3 repeat is marked by a red dotted line. Blue and brown arrows represent a serine- and histidine-rich region, respectively. Green bars represent alpha helices and a red arrow represents the presence of a loop (PPTX 135 kb)

425_2015_2366_MOESM4_ESM.pptx

Supplementary material 4 Fig. S4 a Secondary structure prediction of SbMYB15 shows the presence of alpha helices, strands and coils. b Secondary structure composition. c Solvent accessibility of SbMYB15 protein (PPTX 205 kb)

Supplementary material 5 Fig. S5 Phylogenetic analysis SbMYB15 transcription factor (PPTX 90 kb)

425_2015_2366_MOESM6_ESM.pptx

Supplementary material 6 Fig. S6 Transactivation assay of SbMYB15. a Transformed yeast cells (AH109) with pGBKT7-SbMYB15 and pGBKT7 alone were grown on SD/-Trp/-His/-Ura medium. b Schematic representation of the plating. c Yeast cells transferred on filter paper showed β-galactosidase (encoded by LacZ gene) activity using X-gal staining (PPTX 137 kb)

425_2015_2366_MOESM7_ESM.pptx

Supplementary material 7 Fig. S7 a Diagrammatic representation of the pCAMBIA1301-35S:SbMYB15 construct. Screening of T1 transgenic plants. b–c PCR confirmation of T1 transgenics with SbMYB15 gene specific primers and hptII primers. d GUS staining of seedlings of N. tabacum WT (i), VA (pCAMBIA1301 alone) (ii), and 35S:SbMYB15 overexpressing transgenic lines (iii–vii). e GUS:NRA ratio for determination of copy number of transgene insertion in transgenics (PPTX 777 kb)

425_2015_2366_MOESM8_ESM.pptx

Supplementary material 8 Fig. S8 a Morphological analysis of N. tabacum transgenic lines (L-79, L-86, L-87, L-123, L-127, L-158 and VA) and WT plants in 0, 100 and 200 mM NaCl concentrations in hydroponic medium. b RT-PCR analysis of the three SbMYB15 representative overexpression lines. c Growth of N. tabacum WT and transgenic lines (L-87, L-123, L-127, L-158 and VA) in 0 and 10 % PEG in hydroponic medium (PPTX 754 kb)

Supplementary material 9 (DOCX 15 kb)

Supplementary material 10 (DOCX 15 kb)

Supplementary material 11 (DOCX 14 kb)

Supplementary material 12 (DOCX 20 kb)

Supplementary material 13 (DOCX 18 kb)

Supplementary material 14 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P.S., Gupta, K., Agarwal, P. et al. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta 242, 1291–1308 (2015). https://doi.org/10.1007/s00425-015-2366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2366-5

Keywords

Navigation