Skip to main content
Log in

Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The Douglas bag technique is reviewed as one in a series of articles looking at historical insights into measurement of whole body metabolic rate. Consideration of all articles looking at Douglas bag technique and chemical gas analysis has here focused on the growing appreciation of errors in measuring expired volumes and gas composition, and subjective reactions to airflow resistance and dead space. Multiple small sources of error have been identified and appropriate remedies proposed over a century of use of the methodology. Changes in the bag lining have limited gas diffusion, laboratories conducting gas analyses have undergone validation, and WHO guidelines on airflow resistance have minimized reactive effects. One remaining difficulty is a contamination of expirate by dead space air, minimized by keeping the dead space <70 mL. Care must also be taken to ensure a steady state, and formal validation of the Douglas bag method still needs to be carried out. We may conclude that the Douglas bag method has helped to define key concepts in exercise physiology. Although now superceded in many applications, the errors in a meticulously completed measurement are sufficiently low to warrant retention of the Douglas bag as the gold standard when evaluating newer open-circuit methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Hill et al. (1924))

Fig. 2

Source: https://goo.gl/images/aGQwI3

Similar content being viewed by others

Abbreviations

R.A.F.:

Royal Air Force

WHO:

World Health Organisation

References

  • Andersen KL, Shephard RJ, Denolin H et al (1971. Fundamentals of exercise testing. World Health Organisation, Geneva

    Google Scholar 

  • Balchum OJ, Hartman SA, Slonim NB et al (1953) The permeability of the Douglas-type bag to respiratory gases. J Lab Clin Med 41:208–280

    Google Scholar 

  • Bartlett HL, Hodgson JL, Kollias J (1972) Effect of respiratory valve dead space on pulmonary ventilation at rest and during exercise. Med Sci Sports 4:132–137.

    Google Scholar 

  • Bassett DR, Howley ET, Thompson DL et al (2001) Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Phyiol 91:218–224

    Article  Google Scholar 

  • Cerretelli P, Sikand RS, Farhi LE (1969) Effect of increased airway resistance on ventilation and gas exchange during exercise. J Appl Physiol 27:597–600

    Article  CAS  Google Scholar 

  • Chinn DY, Naruse Y, Cotes JE (1986) Accuracy of gas analysis in lung function laboratories. Thorax 41:133–137

    Article  CAS  Google Scholar 

  • Comba FA, Midgley AW, Monteiro W et al (2013) How long does it take to achieve steady state for assessment of resting V̇O2max in healthy men? Eur J Appl Physiol 113:1441–1447

    Article  Google Scholar 

  • Cotes JE, Woolmer RF (1962) A comparison between twenty seven laboratories of the results of analysis of an expired gas sample. J Physiol (Lond) 163:36p–37p

    Google Scholar 

  • Daynes HA (1920) The process of diffusion through a rubber membrane. Proc R Soc Lond A 97:286–307

    Article  CAS  Google Scholar 

  • Director of Air Services (1918–1919) The permeability of airship fabrics. Tech Rep Advis Comm Aeronaut (Lond) 3:1316–37, 1338–1363

  • Douglas CG (1911) A method for determining the total respiratory exchange in man. J Physiol (Lond) 42:1–2

    Article  Google Scholar 

  • Douglas CG, Haldane JS (1906) A convenient form of gas analysis apparatus. J Hyg (Lond) 6:74–76

  • Douglas CG, Priestley CG (1948) Human physiology: A practical course, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Haldane JS (1918) Methods of air analysis. Charles Griffin, London

    Google Scholar 

  • Herbst R (1928) Der Gasswoffstechsel als Maß der körperlichen Leistungsfähigkeit. I. Die Bestimmung des Sauerstoffaufnahmevermögens beim Gesunden (The gas metabolism as a measure of physical fitness. I. The determination of oxygen uptake in healthy people). Dtsch Arch. Klin Med 162(1):33–50

    Google Scholar 

  • Hill AV, Long CNH, Lupton H. (1924). Muscular exercise, lactic acid, and the supply and utilization of oxygen, part IV–VI. Proc Roy Soc (Lond) 97:84–138

    CAS  Google Scholar 

  • Hopker JG, Jobson SA, Gregson HC et al (2012) Reliability of cycling gross efficiency using the Douglas bag method. Med Sci Sports Exerc 44:290–296

    Article  Google Scholar 

  • Jakeman P, Davies B (1979) The characteristics of a low resistance breathing valve designed for measurement of high aerobic capacity. Br J Sports Med 13:81–83

    Article  CAS  Google Scholar 

  • Johnson RE, Robbins F, Schilke R et al (1967) A versatile system for measuring oxygen consumption in man. J Appl Physiol 22:377–379

    Article  CAS  Google Scholar 

  • Kasch FW, Philipps WM (1965) Diffusion of CO2 in meteorogical balloons and oiled syringes. Res Quart 36:104–105

    Google Scholar 

  • Lenox JB, Koegel E (1976) Evaluation of a new low resistance valve. J Appl Physiol 37:410–413

    Article  Google Scholar 

  • Lloyd BB (1958) Development of Haldane’s gas analysis apparatus. J Physiol (Lond) 143:5P–6P

    Google Scholar 

  • McKie D (1952) Antoine Lavoisier, scvientist, economist and reformer. Constable, London

    Google Scholar 

  • McLean J, Tobin G (2010) Historicaal. In: McLean J, Tobin G (eds) Animal and human calorimetry. Cambridge University Press, Cambridge, pp 6–23

    Google Scholar 

  • Michaelis H, Müller EA (1942) Die Bedeutung des alveolaren CO2-Drucks für die Bestimmung des auf die Atmung entfallenden Energieverbrauches [The significance of the alveolar CO2 pressure for the determination of the energy consumption due to breathing]. Arbeitsphysiol 12:85–91

    Google Scholar 

  • Mills JN (1951) The use of an infra-red analyser in testing the properties of Douglas bags. J Physiol (Lond) 116:22–23

    Google Scholar 

  • Perkins JF (1954) Plastic Douglas bags. J Appl Physiol 6:445–447

    Article  Google Scholar 

  • Pettenkofer M (1862) Ueber die Respiration. Ann Chem Pharm 123(Suppl. 2):1–52

    Google Scholar 

  • Pettenkofer M, Voit C (1866) Untersuchungen über den Soffverbrauch des normalen Menschen. Z Biol 2:478–573

    Google Scholar 

  • Prout W (1813) On the quantity of carbonic acid gas emitted from the lungs during respiration at different times and under different circumstances. Thomson’s Ann Philosoph 2:328–342

    Google Scholar 

  • Pugh LG (1958). Muscular exercise on Mount Everest. J Physiol (Lond) 141:233–261

    Article  CAS  Google Scholar 

  • Quinney HA, Gledhill N, Peterson S et al (1986) Accreditation of elite athlete testing laboratories in Canada. In: Reilly T, Watkins J, Borns J (eds) Kinanthropology III: Proceedings of the VIII Commonwealth International Conference on Sport, Physical Education, Dance, Recreation and Health. Spon, London, pp 233–242

    Google Scholar 

  • Regnard P (1879) Récherches expérimentales sur les variations pathologiques des combustions respiratoires. Progrès Médicale, Paris

    Google Scholar 

  • Regnault V, Reiset J (1849) Recherches chimiques sur la respiration des animaux. Ann de Chim et de Phys Series 3 26:299–519

    Google Scholar 

  • Scholander PF (1947) Analyzer for accurate estimation of respiratory gases in one-half cubic centimeter samples. J Biol Chem 167:235–250

    Article  CAS  Google Scholar 

  • Seliger V, Pachlopniková I, Mann M et al (1969) Energy expenditure during paddling. Physiol Bohemoslov 18:49–55

    CAS  PubMed  Google Scholar 

  • Shakespear GA (1916–17) A new permeability tester for balloon fabrics. Tech Rep Advis Comm Aeronaut (Lond) 2:579–583

  • Shephard RJ (1955) A critical examination of Douglas bag technique. J Physiol (Lond) 127:515–524

    Article  CAS  Google Scholar 

  • Shephard RJ (1966) A comparison of paramagnetic and chemical methods for the determination of oxygen. Int Z angew Physiol 22:279–284

    CAS  PubMed  Google Scholar 

  • Shephard RJ (2012) A critical examination of Douglas bag technique. Med Sci Sports Exerc 44:1407

    Article  Google Scholar 

  • Skinner JS, Wilmore KM, Jaskolska A et al (1999) Reproducibility of maximal exercise test data in the HERITAGE family study. Med Sci Sports Exerc 31:1623–1628

    Article  CAS  Google Scholar 

  • Venable CS, Fuwa T (1922) The solubility of gases in rubber and rubber stock and effect of solubility on permeability. Ind Eng Chem 14:139–142

    Article  CAS  Google Scholar 

  • Wright GR, Sidney KH, Shephard RJ (1978) Variance of direct and indirect measurements of aerobic power. J Sports Med Phys Fitness 18:33–42

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard.

Additional information

Communicated by Nigel A.S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shephard, R.J. Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol 117, 381–387 (2017). https://doi.org/10.1007/s00421-017-3556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3556-6

Keywords

Navigation